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ABSTRACT

Problems related to the design, construction and evaluation of
a mobile planetary vehicle and its control intended for an unmanned ex-
ploration of Mars have been under study. Broad problem areas receiving

attention include: vehicle configuration, dynamics, control, systems and

propulsion; systems analysis; terrain sensing and modeling and path selec-

tion; and chemical analysis of samples.

The following tasks have been under active study: design and
construction of a 0.5 scale dynamic vehicle, mathematical modeling of
vehicle dynamics, experimental 0.4 scale vehicle dynamics measurements and

interpretation, vehicle electro-mechanical control systems, remote control
systems, collapsibility and deployment concepts and hardware, design, con-
struction and evaluation of a wheel with increased lateral stiffnes, system
design optimization, design of an on-board computer, design and construction

of a laser range finder, measurement of reflectivity of terrain surfaces,
obstacle perception by edge detection, terrain modeling based on gradients,
laser scan systems, path selection system simulation and evaluation, gas
chromatograph system concepts, experimental chromatograph separation measure-
ments and chromatograph model improvement and evaluation.

These tasks are defined in detail and the progress which has been
achieved during the period July 1, 1973 and December 31, 1973 is summarized.
Projections of work to June 30, 1974 are included.
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Analysis and Design of a Capsule Landing System

and Surface Vehicle Control System for Mars Exploration

I. Introduction

Current national goals in space exploration include a detailed study

and examination of the planet Mars. The effectiveness of Mars exploration

missions would be enhanced according to the extent to which the investigative

devices which are landed are mobile, to the range of their mobility, and to

the ability to control their motion. In order to achieve basic mission objec-

tives, and beyond that, to maximize the return on the commitment of resources

to the mission, formidable technical problems must be resolved. The major

factor contributing to these problems is the round trip communications time

delay between martian and earth control stations which varies from a minimum

of about 9,minutes to a maximum of 25 minutes. This time delay imposes strin-

gent requirements on the vehicle, on its control and communication systems and

on those systems included on board to make the scientific measurements, in

terms of their ability to function autonomously. These systems must be able

to operate with a high degree of reliability and must be capable of calling

for earth control under appropriate circumstances.

A number of important problems originating with these factors and

relating directly the basic mission objectives of an unmanned exploration of

Mars have been and are currently being investigated by a faculty-student pro-

ject team at Rensselaer Polytechnic Institute with the support of NASA Grant

NGL-33-018-091.

This progress report describes the tasks which have been undertaken

and documents the progress which has been achieved in the interval July 1,

1973 to December 31, 1973.

II. Definition of Tasks

The delay time in round trip communication between Mars and Earth

gives rise to unique problems relevant to martian and/or other planetary

explorations. All phases of the mission from landing the capsule in the

neighborhood of a desired position to the systematic traversing of the sur-

face and the attendant detection, measurement, and analytical operations

must be consummated with a minimum of control and instruction by earth based

units. The delay time requires that on board systems capable of making

rational decisions be developed and that suitable precautions be taken against

potential catastrophic failures. Four major task areas, which are in turn

divided into appropriate sub-tasks, have been defined and are described below.

A. Vehicle Configuration, Control, Dynamics, Systems and Propulsion

The objective of this task is the design of a roving vehicle for

the exploration of Mars. This design includes the aspects of

vehicle configuration, collapsibility for launch configuration,
deployment, dynamics, motion and attitude control, obstacle nego-

tiation capability, and performance evaluation. The efforts of

this task are made within the context of the mission definition

and delivery system constraints. The ultimate goal is the develop-

ment of a vehicle capable of operating within the constraints of

the Mars mission, but flexible in design, to insure reliability
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with respect to the unknowns of Mars, and to accommodate the

alterations in the mission as a result of information gathered

during the exploration.

B. General Systems Analysis. One major objective of this task is
to develop a framework within which decisions in design involving

conflicting requirements can be made rationally and in the context

of the whole system and mission. Relationships between alternative

mission profiles and specifications and weight, energy and space
allocation and management will be sought.

The second major objective is to develop the software and hardware

design specifications for the on-board computer of a Mars roving
vehicle.

C. Surface Navigation and Path Control. Once the capsule is landed
and the roving vehicle is in an operational state, it is neces-

sary that the vehicle can be directed to proceed under remote

control from the landing site to specified positions on the

martian surface. This task is concerned with the problems of

terrain sensing, obstacle detection, terrain modeling, path se-
lection and navigation between the initial and terminal sites
when major terrain features precluding direct paths are to be
anticipated. On board decision making capability must be designed

to minimize earth control responsibility except in the most adverse
circumstances.

D. Chemical Analysis of Specimens. A major objective of martian
surface exploration will be to obtain chemical, biochemical or

biological information. Many experiments proposed for the mission
require a general duty, gas chromotgraph-mass spectrometer for
chemical analysis. The objective of this task is to generate funda-
mental data and concepts required to optimize this chemical analysis
system.

III. Summary of Results

Task A. Vehicle Configuration, Control, Dynamics, Systems and Propulsion

This broad task has been subdivided into the following subtasks:
experimental and analytical studies of vehicle dynamics; detailed design of
structural components; design of deployment hardware; motor drive and
mechanical transmission details; development of launch configuration and de-
ployment procedure; wheel tester and grouser design; wheel analysis; detailed
wheel design and construction; on-board controls for steering, motor drive
for levelizing, deployment and emergency maneuvers; radio link for remote
operation; and remote control station and transmitter design.

A.l. Vehicle Structure and Dynamics

A.l.a. Experimental and Analytical Studies of Vehicle Dynamics

Physical characteristics such as spring constants, damping
constants and moments of inertia of the 0.4 scale vehicle
model were measured experimentally. A three dimensional,



three degree-of-freedom mathematical model was developed and
its predictions were compared with the dynamic behavior of
the model. Satisfactory agreement was observed indicating
that the mathematical model can be used as a design tool to
obtain desired dynamic characteristics. Extensions of the
mathematical model have been identified. No further work is
planned pending construction of the 0.5 dynamic. vehicle.

A.l.b. Detailed Design of Structural Components for the 0.5 Scale Model

Half-scale model dimensions have been established and the de-
signs of the front steering gear box, payload box and front
axle have been completed. Design of the front and rear struts,
torsion bar assembly and motor drive system is proceeding.

A.l.c. Design of Deployment Hardware

The conceptual design of the deployment devices is complete
and final detail design is proceeding. Bench testing of these
components is planned prior to incorporation into the overall
vehicle structure.

A.l.d. Motor Drive and Mechanical Transmission Details

Motors have been selected and procured. -Conceptual design of
the gear train has been established and is being analyzed.

A.2. Development of Launch Configuration and Deployment Procedure

The basic launch configuration has been modified from last year's
concept in order to simplify the deployment procedure. The new configura-
tion remains consistent with all Viking capsule constraints and yields a
satisfactory center of gravity location.

A.3. Wheel Design and Testing

Ao3.a. Wheel Tester and Grouser Design

No work beyond that reported in the preceding progress report
has been undertaken. Further work will be undertaken after
construction of the new 0.5 scale wheel.

A.3.b. Wheel Analysis

A modified wheel design has been developed to increase the
lateral stiffness of the wheel on the basis of several hoop
designs which were constructed and tested during this past
period.

A.3.c. Detail Design and Wheel Construction

An improved detail design of a wheel with increased lateral
stiffness has been obtained and construction of such wheels
for installation on the 0.5 scale model is underway.
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A.4. Radio Control

A.4.a. On-Board Electrical Controls

A system for controlling the motors with digital input has
been conceived. The system which involves digital/analog
converters and analog feedback at the motors is currently
under construction and test.

A.4.b. Radio Link

Frequency shift key encoding is used with walkie-talkies
to provide a 100 bit/sec radio link to the vehicle. The
entire system has been tested on the bench and is currently
under construction.

A.4.c. Remote Control Station and Transmitter Design

Construction is underway on the remote control package which
will interface with the vehicle either by the radio link or
via an umbilical for bench testing. This device will permit
open loop, manual control of the 0.5 scale model.

Task B. General Systems Analysis

B.1. System-Modeling and Design Optimization

Optimal designs have been developed for three major alterna-
tive models, i.e. four-wheeled vehicle with either direct
earth link or an orbiter-earth link and a six-wheeled vehicle
with direct earth link. The method by which to obtain optimal
design for these and other cases has been developed in general
terms. Methods for determining the sensitivity of the optimal
designs to perturbation of design parameters have also been
developed. This task is now complete and a technical report is
scheduled for issuance in February of 1974.

B.2. On-Board Computer Design

Previous work in this area involved the use of a statistical
approach using queuing theory and random variables to study
the average behavior of the computer-vehicle system. This
study identified a higher level problem in design of an on-
board computer, namely the need to define computer design
specifications both in regard to software and hardware prior
to the computer design process. The present task is aimed at
defining the software and hardware specifications for an on-
board computer. It is assumed that all control and scheduling
decisions will be provided autonomously. The goal will be to
synthesize a design that will meet the lowest realizable speci-
fication bound. Ultimately, volume, weight, cost, power require-
ments and heat generation will have to be optimized to meet
mission requirements. Alternative hardware and software con-
figurations will have to be considered and trade-offs evaluated.



Task C. Surface Navigation and Path Control

This task deals with problems of terrain sensing, terrain modeling,
obstacle detection, path selection algorithms and evaluation of path selection
systems. Active tasks are: design and construction of a laserrange finder,
measurement of bidirectional reflectance ratios, three dimensional obstacle
recognition, terrain parameter estimation from gradient data, laser range finder
scanning systems and path selection system evaluation.

C.l. Laser.Range Finding

C.l.a. Construction of a Laser Range Finder

Following a thorough search of the literature, a design for
a laser range finder with the potential of achieving a 5 cm
accuracy has been formulated. Most of the required parts
have been obtained and construction has been started.

C.l.b. Surface Reflectivity, Laser Power Requirements and Receiver Selection

Primary emphasis has been directed to determining the experi-
mental measurements which will' be necessary to specify laser
power and receiver requirements for an effective scanning
system. A test apparatusfor making the measurements has been
designed and is under construction. Experimental procedures
and data processing methods have been developed.

C.2. Obstacle Classification and Detection and Terrain Modeling

C.2.a. Obstacle Identification by an Edge Detection System

An algorithm which can be used to "outline" an obstacle and
therefore lead to its detection has been developed and applied
to the case of a hemispherical boulder. A second algorithm
existing in the literature has also been used. Both algorithms
were evaluated with perfect sensor range data and with sensors
invoAving range error. Both algorithms are found to be effec-
tive provided that the proper threshold values are used. The
results are encouraging and future work to determine minimum
information requirements for effective boulder identification
is underway.

C.2.b. Parameter Estimating for Terrain Modeling from Gradient Data

A two-step terrain modeling procedure has been developed. The
first step involves the use of four discrete data points whose
heights and locations are provided by an appropriate range
sensor. These four points are fitted by least mean square
methods to a plane forming a section of known height, location
and gradient. Four such sections are then fitted in a second
step by a third degree, two-dimensional polynomial. An error
analysis of this modeling method has been completed and a com-
puter program to apply the method is in the process of comple-
tion.



C.2.c. Scanning Scheme for a Laser Rangefinder

A study of alternative scanner schemes, i.e. the pattern of
data points to be sought by the increments of pointing angles
as determined by a hardware system, was initiated. The goal
was to establish uniform elevation and azimuthal angle incre-
ments which would provide sensor data of sufficient quality
to define the terrain adequately. Unfortunately, reliable
gradient data require relatively large data spacing whereas
large data spacings increase the probability of missing an
obstacle. Since data spacing is a function of range as well
as incremental angles, constant angle increments lead to small
data spacings at close range and therefore large gradient errors
whereas they lead to large data spacing at long range and an
increased probability of missing obstacles. Future work will
be aimed at resolving these conflicting objectives.

C.3. Path Selection System Simulation and Evaluation

C.3.a. Development of Standard Test Terrains and Evaluation Procedures

A path selection system evaluation test procedure has been de-
veloped. The procedure investigates the obstacle avoidance
ability of a path selection system by simulating its performance
on a sequence of test terrains with and without random effects.
The test procedure begins with simple single obstacle encounters
in a series of increasingly difficult circumstances, i.e. flat
terrains, rolling terrains, rolling inclines, etc., and ends
with complex multi-obstacle tests. The simulation code has been
improved in many details and computer time requirements have
been reduced.

C.3.b. Evaluation of an Early Cornell Path Selection System

An early and preliminary Cornell path selection system proposed
several years ago was evaluated using the simulation to deter-
mine the strengths and weaknesses not only of the proposed syst n
but also of the simulation and evaluation program. The Cornell
method which has the strong advantage of hardware and computa-
tional simplicity was found to be able to contend reasonably well
with clearly defined obstacles but had some difficulties dealing
with rolling terrains especially when random effects such as bounc-
ing of the vehicle because of rubble are included. A number of
recommendations for modifying the Cornell system have been proposed
and will be investigated.

Task D. Chemical Analysis of Specimens

This task is concerned with developing fundamental concepts which
will be required to optimize a gas chromatograph - mass spectrometer chemical
analysis system. Topics receiving active effort include analysis of chroma-
tograph characteristics, multicomponent chromatography, and chromatograph
model improvement.

D.l. Chromatograph System Characteristics

These studies are intended to provide chromatograph design
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techniques.and guides using simulation models currently under

development. Current efforts involve the definition of resolu-

tion or degree of separation obtained in a specific system
under particular operating conditions. A systematic study of

the effect of system parameters upon resolution using simulation

will provide a quantitative understanding of chromatograph be-

havior and design guides. Resolution as often defined in the

literature and based on moment analysis was shown to represent

inadequately separations in multicomponent systems because the

definition was insensitive to chemical composition. A definition

based on each component's contribution to the area under a

chromatograph peak is under investigation and shows promise.
Verification by simulation for several conditions used in the

experimental program will be undertaken, to be followed by a more

systematic analysis of design parameter effects.

D.2. Chromatograph Simulation Development

D.2,a. Multicomponent Chromatography

Modifications to the chromatographic test facility resulted in

sharper input pulses for liquid samples and full scale chromato-

gram recordings which reduced relative reading errors by a factor

of 3 or 4 in some cases. To supplement pentane-heptane data on

the porous Chromosorb-102 column, which deviated appreciably from
linear superposition predictions, additional experiments were

conducted on two nonporous columns. A Carbowax-1500 column failed

to separate the two chemicals because values of the thermodynamic

parameter mRO were too similar. A DES column separated the two

components and superposition of pure component data was an excel-
lent representation of the binary data. Furthermore, pure com-

ponent data were well represented by the simple equilibrium
adsorption model. Future work includes porosity determinations

for the columns and review of mech:..nisms possibly responsible for

deviations from linear superposition in multicomponent systems.

D.2.b. Chromatograph Model Improvement

A recently released technical report documented a more complete

chromatograph model which included intraparticle as well as inter-
particle transport effects and finite rates of adsorption. Mathe-
matical complexity precluded analytical solutions, so numerical
techniques were investigated. Orthogonal collocation was applied
to two simplified versions of the model which were solved analyti-
cally. Comparison between the exact and numerical solutions was
then possible. Space discretizations using seven and fifteen
elements have represented responses for the simple models well.
Corresponding accuracy by conventional finite difference methods
would require at least an order-of-magnitude increase in the number
of space elements. The complete model is currently being coded

for machine computation.

IV. Detailed Summaries of Progress



Task A. Vehicle Configuration, Control, Dynamics, Systems and Propulsion

The objective of this task is to design-and construct an operational

half-size demonstration model of a Mars roving vehicle to verify proposed con-

cepts for:

1. Collapsibility
2. Deployment
3. Controllability of propulsion and maneuvering
4, Obstacle negotiation capability
5, Payload carrying capability
6. Operation by radio control

Towards the accomplishment of this objective, the vehicle design

task has been organized into several subtasks. While these subtasks are

intimately related and there is a good deal of interaction between the team
members working on them, each will be described separately under the follow-

ing headings:

Task A.l. Vehicle Structure

A.l.a. Experimental and Analysical Studies of Vehicle Dynamics
A.l.b. Detailed design of structural components
A.l.c. Design of deployment hardware
A.l.d. Motor drive and mechanical transmission details

Task A.2. Development of Launch Configuration and Deployment Procedure

Task A.3. Wheel Design and Testing

A.3.a. Wheel tester and grouser design
A.3.b. Wheel analysis
A.3.c. Detail design and wheel construction

Task A,4. Padio Control

A.4.a. On-board electrical/electronic controls for steering,
motor drives for levelizing, deployment and emergency
maneuvers

A.4.b. Radio link for remote operation
A.4.c. Remote control station and transmitter design

A.I. Vehicle Structure - P. Marino, D. Kern, M. Miecznikowsik,
J. Harrison, C. Deno and G. Scapellati

Faculty Advisor: Prof. G. N. Sandor

A.l.a. Experimental and Analytical Studies of Vehicle Dynamics

Subtask Objective. To determine the dynamic response of the .4
size model and develop a mathematical tool for the dyna-
mic optimization of the forthcoming half-size model and
eventually the full-size prototype vehicle.

Progress Summary. Physical.characteristics, such as spring con-
stants, damping constants and moments of inertia of the
.4 size vehicle model were measured experimentally. A
three-dimensional, three-degree-of-freedom mathematical
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model was developed, programmed for digital computation and
its predictions compared with the. dynamic behavior of the
model. Satisfactory agreement was found, thus indicating
that the mathematical model can be used as a design tool.
Further extensions of the mathematical model to include-more
degrees of freedom have been outlined.

Discussion. The dynamic analysis of the MRV was approached by
two methods:

1. mathematical modeling
2. physical testing

Initially the equations of motion of a three-dimensional,
three-degree-of-freedom (roll, pitch, vertical displacement)
;model were established. Then, the measurement of the physical
characteristics of the 0.4 MRV model and dynamic-tests were
conducted. Finally, a comparison of actual response with the
mathematically predicted response was made. The result showed
the mathematical model to be a basic design tool from which
gross vehicle motions may be predicted. It also may be expanded
to develop a more sophisticated mathematical model. Figure 1
shows the schematic model. The wheels have been replaced by
springs and dashpots. This is the schematic from which the mathe-
matical model was developed.

For simplicity, three degrees of freedom were considered. Verti-
cal displacement was an obvious choice since the MRV bouncing
across Martian terrain will be carrying a scientific payload.
Because of the "dragster" design of the RPI-MRV, the vehicle
center of gravity was located near the rear wheel base far from
the center of suspension. A natural pitching motion was there-
fore introduced by the vehicle design. As a result, the mathe-
matical model also includes pitch motion. Finally the movement
of the MRV over rocks and potholes easily introduced a rolling
motion. Therefore, with the three degrees of freedom chosen to
be vertical displacement, roll, and pitch rotation, the develop-
ment of the equations of motion proceeded.

In order to simplify the equations of motion, the MRV was con-
sidered.to be a two-mass system: a rolling (sprung) mass, and
a non-rolling (unsprung) or fixed mass. Additionally,if a moving
coordinate system, x'y'z' fixed to the vehicle was adopted, the
inertial terms in the equations of motion would become much
easier to determine. Therefore, the coordinate system of Figure 2
was used. The xyz axis system was fixed to the unsprung portion
of the vehicle.

To determine the external forces and moments, the vehicle model
assumed two sets of virtual displacements:

1. roll with vertical displacement, Fig. 3
2. pitch with vertical displacement, Fig. 4

The resulting equations are a set of second-order linear differ-
ential equations to be solved simultaneously. A digital computer
program titled, DYNAMO (from DYNAmic MOdels) was used to solve
these equations.
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Various terrain conditions may be simulated on the mathematical

model. A step input to the vehicle c.g. was simulated by assum-

ing an initial condition on the vertical displacement. An
initial condition on pitch displacement simulates a step either

to the front or rear wheel pair as would be encountered by the
vehicle's front wheels hitting a sudden difference in elevation.
Similarly an initial condition on roll displacement simulates a

step to either the right or left side wheel pair. A washboard
terrain effect can be modeled by equating the left side of the

first equation of motion to a sinusoidal forcing function of

desired frequency and amplitude. The c.g. response to various
terrains may be simulated by equating the left side of the
corresponding equation of motion to the appropriate function.

The mathematical model may be easily extended

1. to include a spring and damper to be located
in the connection of the frame to the front
axle, or

2. to consider wheels of different elastic proper-
ties.

No further work is contemplated at this time until the 0.5
scale model becomes operational. A technical report summarizing
this study is to be issued in February 1974.

A.l.b. Detailed Design of Structural Components

Objective. Design and construction of the individual parts
of the model are to be completed early enough for assembly and
testing of the vehicle by early May, 1974.

Progress Summary. The full scale vehicle dimensions, and thus,
the half-scale model dimensions, lave beci firmly establishdd.
Designs of the front steering gear box, the payload box, and
the front axle have been completed. Design is progressing on
the back and front struts, the torsion bar assembly, and motor
drive system.

Front steering gear box (Fig. 5). This component must turn
the front axle through the proper steering angles and, in the
emergency maneuver (flip over of the vehicle), pivot the front
axle 1800 about the front struts. These two functions are
accomplished by two self-locking worm gear pairs at right
angles to each other. One worm gear pair governs the steer-
ing angle and the other controls the angle between the front
axle pivot and the vehicle's front struts. Being self-locking,
this design requires no brakes or other locking devices, and
at the same time provides large gear reductions across each
gear set.

Payload box. This component holds the scientific package,
torsion bar assembly, batteries, etc. It is also a main struc-
tural member of the vehicle frame. It consists of an aluminum
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angle box frame with a 1/8" thick plexiglass skin. This con-

struction allows visual inspection of contents and mechanisms

inside the payload box while the vehicle is being demonstrated.

Schedule:

All parts to be designed by 2/28/74

Construction and assembly to be completed by 5/10/74

Initial mechanical testing of 0.5 size model

to be completed by 6/30/74

A.l.c. ,Design of Deployment Hardware

Objective. To finalize the design of hardware components

which will enable the 0.5 scale model vehicle to deploy. The
design of these components is based on the results of Task A.2.,

"Development of Launch Configuration and Deployment Procedure."

Progress Summary. The conceptual design of deployment devices

is complete. Finalized detail design and bench testing of hard-

ware is to be done before embodiment into the overall vehicle

structure.

Discussion. The deployment system consists of four subassemblies.
These are:

the front axle flip-over mechanism,

the torsion bar assembly,

the front strut hinge and locking mechanisms, and

the rear strut unfolding and locking mechanisms

The front axle flip-over mechanismhas been finalized (Fig. 5).
It consists of a motor driving the front axle via a worm-gear

pair.

The torsion bar assembly, Fig. 6, which controls vehicle

height and payload attitude, and also takes part in deployment,
is complete in its preliminary design. Motors and gears have

been selected, but some detailed design has yet to be completed.

The basic design of the front hinge and locking device, Fig. 7,
is complete. This mechanism will be constructed and bench-

tested before it is incorporated into the overall design.

The rear strut unfolding mechanism is dependent upon the drive
motor configuration. Therefore, the latter will have to be com-
pleted before the rear struts are designed.

No major problems are foreseen in any of these areas.
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Schedule:

Detailed design of all parts should be completed by mid-

February with fabrication of all parts completed in early

May.

A.l.d. Motor Drive and Mechanical Transmission Details

Objective: To design the most advantageous main drive motor

and gear system for the half-scale model considering both

physical and economic constraints.

Progress Summary. Motors have been selected and procured.

Conceptual design of the gear train, Fig. 8 and 9, has been

established and is now being analyzed.

Progress (detailed discussion). Based on tests and analysis

of the previous 0.4 scale model, power and torque requirements

were established for the half-scale model. With a selected

design speed of approximately 1 mph the power required from

each back wheel drive motor was set at 1/8 hp.

The market place was then searched for available motors. It

was quickly established that torque motor types could not be

used because of both their cost and their relatively high

weight. It was also found that most other motors that would

meet specifications would have to be made to order. This

meant high price and long delivery delays.

A solution was found in some government surplus aircraft con-

trol motors. These motors could be obtained in a reasonable

time and for a reasonable price. They will serve our purpose

with only slight modification.

Because the speed of the motors i! 7500 rpm and the speed of

the wheel at 1 mph is approximately 20 rpm, a gear train is

necessary with a ratio of between 300 and 400. This is in the

conceptual stage, Fig. 8. It is thought to obtain the de-

sired gear ratio from two sets of gears, a primary set of spur
gears and a secondary set of worm and wheel. The design and

analysis of the gear assembly is in progress.

Major Problems. The only problem that might occur is a space
conflict between the frame and gear assemblies. This will
probably slow down the final design and result in trade off
in both gear assembly and strut design.

Schedule:

Design to be completed by .2/28/74

Construction and assembly to be completed by 5/10/74

Initial mechanical testing to be completed by 6/30/74
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A.2. Development of Launch Configuration and Deployment Procedure -
P. Marino
Faculty Advisor: Prof. G. N. Sandor

Objective. To devise a launch configuration with Viking
Aeroshell limitations which would allow simple and reliable
deployment.

Progress Summary. The basic launch configuration has been
changed since last year's design so as to simplify the deploy-
.ment procedure. This configuration is consistent with all
Viking capsule constraints and yields a satisfactory center
of gravity location, Figs. 10 and 11.

Discussion. Last year's launch configuration required some
type of device to lift the front section of the vehicle in
order tIo put the Rover into its operational mode. Investiga-
tion showed this to be a source of difficulty because of the
large torques required and space and weight restrictions. With
this in mind, a new launch configuration was devised which
enables the motors and gearing associated with the torsion-bar
assembly in the payload to double as the source of power for
deploying the front section of the vehicle. This seems, at
this time, to be an excellent solution to a potential problem.

Accordingly, the deployment procedure has been changed in that
the deployment of front and rear sections must occur simultaneous-
ly. This is because the rear sections will be deployed via dis-
posable cables which are actuated by the unfolding of the front
section.

Possible problems may be encountered in the unfolding of the
rear struts due to interference with the motor and gear train
but this will not be determined until the drive design is com-
plete. Little work remains to be done in this area as the
configuration seems acceptable. The remaining work falls into
the deployment hardware subtask A.l.c. discussed earlier.

A.3. Wheel Design and Testing - D. Kern, J. Harrison, C. Deno and
G. Scapellati
Faculty Advisor - Prof. G. N. Sandor

A.3.a. Wheel Tester and Grouser Design

Objective. To determine the optimum grouser design for use on
the RPI MRV.

Progress Summary. Several grouser designs have been tested on
the wheel testing machine. One design has shown to be superior
to the others. No work has been done in this area pending con-
struction of the 0.5 size wheels.

A.3.b. Wheel Analysis

Objectives. To analyze the various possible wheel hoop con-
figurations and select the optimum design for the RPI MRV.
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Progress Summary.. A wheel design has been chosen which
appears superior to last year's wheel..

Discussion. Last year's circular hoop-spoke design proved
to lack sufficient lateral stiffness. During this past
summer several hoop designs were constructed and analyzed.
The best design with respect to lateral stiffness was chosen
and is being used on the wheel at this time, Fig. 12.\

No problems are seen to exist at this time. Future work in-
volves completion of an actual wheel and complete testing
of the design. This.is planned for the spring term.

A.3.c. Detailed Design and Wheel Construction

Objective. Wheels of the new improved design will be pro-
vided for the half-scale model in time for assembly.

Progress Summary. An improved design for the toroidal metal
wheel has been developed and construction is underway.

Discussion. The previous design for the MRV wheels had a
problem in lateral stability in that the wheels could not
resist side loads of any great magnitude. To solve this
problem the hoop-spokes were stiffened near the hub and their
shape altered from the former circular configuration to a
pear-shaped curve, Fig. 12.

The detailed mechanical configuration of hub and bearings has
been established. A method of construction of the wheel hubs
was found to save aluminum and reduce costs, heliarc welded
bearing supports in the wheel web save many hours of machining.
In addition to these points, it was decided to make the rear
wheels stiffer than the front wheels by increasing the thick-
ness of the metal involved rather than configuration or the.
numer of spokes. Rubber mounts were selected and procured to
serve as hinges between spokes and outer rim.

Schedule.

Construction to be completed by 5/10/74

Testing on vehicle through 6/30/74

A.4. Radio Control - J. Cooley, F. Gorton, D. Perly, L. Heyl,
L. Bradshaw, T. Geir, K. Fell

Faculty Advisor: Prof. G. N. Sandor, Prof. W. Moyer

A.4.a. On-board Electrical Controls

Objective. Control of on-board motors for steering, speed,
payload, and emergency maneuver.

Progress Summary. A scheme for controlling the motors with
digital information has been developed, Fig. 13. It involves
digital/analog (D/A) converters and analog feedback at the
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motors. This system is currently under construction and
test.

Discussion. The vehicle functions are divided into four
subsystems as follows:

Subsystem A - steering

Subsystem B - speed

Subsystem C - payload

Subsystem D - miscellaneous

/,The steering commands are stored in an analog Read Only
Memory (ROM), built out of an operational amplifier and a
resistor ladder. The commands are addressed by a 4-bit
digital word, and take the form of a reference voltage.
This voltage is fed into a position control feedback net-
work which controls the steering motor. The analog ROM has
been built and tested for steering angles of 0 , +50, +200,

+300, +450, +600, and +900, The design of the motor control
is still under study.

The speed voltage reference is generated in a 2-bit plus
sign-bit D/A converter. This signal is fed into an elec-
tronic differential which uses a signal from the steering
subsystem to generate the required differential action in
the rear wheels to avoid skidding in a turn. The rear wheel
motors are controlled from there by a tachometer feedback
scheme. This system is currently under construction.

The two payload motors raise and lower front and rear struts,
levelize the payload and activate the deployment sequence.
They are controlled in a forward-backward-stop mode. The
digital portion of this subsystem is under construction and
the analog portion is under study.

The remaining subsystem controls only the emergency maneuver
motor in the forward-backward-stop mode. This motor causes
the steering post to rotate with respect to the front struts
about a transverse horizontal axis. The status of this sub-
system is the same as the previous one.

No major problems are foreseen in this area, and construction
should be complete by stages running into March.

A.4.b. Radio Link

Objectives. Radio communication with the vehicle and routing
of commands to proper subsystem.

Progress Summary. Frequency shift key (FSK) encoding is used
with walkie-talkies to provide the necessary link. The entire
system.has been tested on the bench and is currently under con-
struction, Fig. 14.
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Discussion. The serial output of a Universal Asyncronous
Receiver/Transmitter (UAR/T) is fed into an FSK modem
modulator/demodulator) which uses a Voltage Controlled
Oscillator to generate two audio tones corresponding to
the two logic values. These tones are transmitted via the
walkie-talkies to the vehicle. They are decoded to voltage
levels via a Phase Lock Loop and Comparator. The signal then
goes to another UAR/T for decoding. Control logic then
checks the validity of the signal and routes the signal to
the proper subsystem.

This entire system has been run on the bench and is under
construction.

Construction should be finished by the end of January, after
which two-way communication will be studied for eventual
interfacing with a mini-computer.

A.4.c. Remote Control Station and Transmitter Design

Objectives. Production of human interface with the vehicle.

Progress Summary. Construction is underway on the remote
control package. It will interface with the vehicle either
by the radio link or via umbilical for bench testing, Fig. 14.

Discussion. There is a rotary switch to select one of the
four subsystems and an array of sixteen pushbuttons to select
the command desired for each subsystem. Once the command is
loaded in with the pushbuttons, it is transmitted by pushing
another button. This is to avoid inadvertently sending the
wrong command.

In transmitting, the command is loaded into the UAR/T men-
tioned earlier. The UAR/T then provides a serial signal for
the FSK modem and walkie-talkie.

Construction is underway on this module and should be complete
by the end of January.

Task B. General Systems Analysis

B.1. System Modeling and Design Optimization - C. Pavarini
Faculty Advisor - Prof. E. J. Smith

Optimal designs have been developed for three major alterna-
tive models, i.e. four-wheeled vehicle with either direct
earth link or an orbiter-earthlink and a six-wheeled vehicle
with a direct earth link. The method by which to obtain opti-
mal design for these and other cases has been developed in
general terms. Methods for determining the sensitivity of the
optimal designs to perturbation of design parameters have also
been developed. This task is now complete and a technical re-
port is scheduled for issuance in February of 1974.
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B.2. On-Board Computer Design - B. Fishman
Faculty Advisor: Prof. E. J. Smith

The objective of this task is to develop the software and

hardware design specifications for the on-board computer.

In addition, support will be provided for the remote control

of the 0.5 scale vehicle.

During the 1972-1973 period the on-board computer design was

investigated by a statistical approach using queuing theory

and random variables to study the average behavior of the

computer-vehicle system. The computer-vehicle system inter-

action was modeled by assuming the computer could be viewed

as a queue server, servicing "customers" on two queues, a

,fixed queue and an interrupt queue. The results of this initial

study brought into focus the more important problem of the

overall computer design. It was apparent that the computer de-

sign specifications, both in regard to software and hardware,

were necessary before a logical design process could be initia-

ted. To determine these specifications, it is assumed that all

of the control and scheduling decisions will be provided auto-

nomously by the computer. The goal will be to synthesize a

design that will meet the lowest realizable specification bound.

Since changes in one part of the design can affect other areas,

the design process has been initially divided into several steps.

The first step is the identification of what would determine an

optimal design. Volume, weight, and cost are the physical res-

trictions on the computer. Power consumption and heat genera-

tion also affect the usefulness of a design. In the process of

optimization one can compare the amount of hardware necessary

for various approaches to a part of the design. In terms of

primary storage, switching networks, and operation features

which are fabricated by means of integrated circuit chips the

above restrictions are monotonically related so that changes in

one of them such as weight gives predeterminable and closely

related changes in the others.

Therefore except for changes in input-output devices and

possible use of secondary storage the above "costs" can be

looked at in one measure, complexity.

The other restriction on the design of the on-board computer

is the ability to perform the functions required of it. These'

functions can be looked at in the general sense as the read-

ing of sensors, performance of operations on the information

of sensors, making of decisions which may involve further

reading of sensors, and operation until finally a result is

stored for later use and/or commands generated for the purpose

of control. This could further be reduced to requirements of

storage and the amounts of various types of operations perform-

ed. Due to the presence of decisions and therefore multiple

logical paths the storage and operation requirements may be ran-

dom variables. The requirements produced by these functions

would be how often they need to be done, and the response
quickness required.
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At this point the initial hardware decisions can be made.
Assuming the sequencing method uses little time or storage,
the word size or sizes can be chosen in regard to the
accuracy needed in calculations and information content of
logical variables. The decision of what types of operations
should be hardware wired, and how, can be made. The number
and types of operations are known. Since the time an opera-
tion takes can be balanced against the hardware required,
the value of shortening of time vs gain in hardware is not
precisely known at this point. However, an estimate should
be reasonable knowing that the computer time required cannot
be reduced without changing the handling of the functions.

Some of the software decisions can be made at this point.
Due to considerations outside the computer, many functions-
cannot take place simultaneously. This could be due to battery
drain as well as physical incompatibility of some functions.
The vehicle would not rove and be expected to charge the
batteries at the same time. The decisions of the types of
modes can be made now since consideration of response times
will have been made. This would not significantly effect hard-
ware since even if an operation is used more frequently in a
particular mode, its average use remains the same. Changes in
mode would be by interrupt, i.e. low battery, or simple com-
pletion of mode purpose.

The dsign so far will have tried to keep the complexity of
the software to a minimum. At this stage the amount of hard-
ware needed could be excessive. To reduce the amount of
primary storage, paging for each mode could be done using a
highly dense (logically) secondary storage. To reduce storage
further, paging could be extended to a more frequent basis or
even some sort of dynamic primary storage allocation might be
considered.

The time required to perform some of the,functions might be*
reduced by the use of queues and interrupts within modes. So
far the times of reading measuring devices and control actions
were considered fixed or at least predictable enough to be
interwoven into a predetermined flow of events and modified
only by change of mode or earth initiated procedure. If the
initiations of control procedures are queued by the existence
of a detected situation, control procedures could be eliminated
from periods when values of measuring devices are not changing
significantly. This would reduce time spent on the function,
but would require a more complex software and hardware.

The control procedures may be more complex in nature due to the
fact that they are not initiated at fixed intervals. Also a
scheduler would be needed for the modes affected having possibly
more than one level of priority. This scheduler would need the
hardware to monitor the status of the several sensors and to
detect critical situations independently of what the computer is
doing at the moment (within a given mode). It would have the
ability to time a particular procedure accurately if need be.
Also changes in function programs length would not be as harmful
to the system timing.
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The independence of the scheduler would result in some
problems. It would be difficult to detect malfunctions in
the additional hardware required to monitor the status of
activities to be controlled. Also the activity of the com-
puter over a given period of time would be hard to predict,
increasing the difficulty of locating malfunctions in the
computer itself. A compromise could be made by having the
CPU time used to do the scheduling via the normal input-
output devices. This would consume time but not require as
much new hardware. In effect this would be redefining the
function procedures and with the inclusion of a scheduling
function the design procedures used so far would hold.

The computer must have the ability to handle breakdowns in
functions of the rover including parts of its own hardware.
Important parts of the rover might have alternate procedures
which could be brought into play if a component breaks down.
Also critical input-output devices, storage blocks, opera-
tions and switching networks may be replicated according to
their expected lifetime. The function programs could be
written in terms of "virtual'! operation codes and addresses
whose interpretation would be determined by setting of special
storage areas. The locating of breakdowns could be done
partly from the interpretation of information sent to earth.
During rover time or when directed from earth, test programs
could be run to locate and bypass problems. Areas where
problems are difficult to detect or of nimportance in detecting
problems, such as the direct operation of the computer from
earth, might require alternative paths to be used simultane-
ously and the results compared. These considerations would
have to be included at the time decisions relating to the
complexity of the hardware are made early in the computer de-
sign.

In summary, this task is aimed at developing a framework
wit.in which software and hardware specifications can be de-
termined systematically according to the mission requirements.

Task C. Surface Navigation and Path Control

This task is subdivided as follows: design and construction of a
laser range finder; surface reflectivity and laser power requirements; three
dimensional obstacle recognition; terrain parameter estimation from gradient
data; laser range finder scanning systems; and path selection system evalua-
tion.

C.I. Terrain and Obstacle Sensors

C.l.a. Construction of a Laser Range Finder - E. E. Svendsen
Faculty Advisors: Prof. C. N. Shen, Prof. W. Moyer

Objective. The objective of this task is to construct a
laser rangefinder transmitter to be used in conjunction with
a rangefinding system on a mars rover.

Progress Summary. The project began by researching existing
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proposed laser range finder concepts and formulating
new ones. After deciding on a particular concept, com-
plete background investigation for all the electronics
was undertaken. Most recently, the obtaining of the parts
involved and the beginning of actual construction has taken
place.

Discussion. Due to the extreme requirements of the range-
finder system many refined techniques have been employed in
the design of a laser transmitter. The necessity of a fast
rise time pulse for accurate ranging has involved the use
of state-of-the-art concepts. If a five centimeter accuracy
over a range of thirty meters is considered a rise time in
the order of nanoseconds is required. In order to meet this
criterion, minute detail must be considered in all phases of
construction as well as in the choice of the electronic com-
ponents.

The proposed general circuit finally shown in Figure 15
operates in the following manner. Before the SCR is trigger-
ed, the capacitor is charged up by voltage V through the
resistor. When the SCR is fired by a trigger pulse applied
to the gate, the charge built up on the capacitor will quickly
discharge through the SCR and the laser diode. The other di-
ode placed in the reverse direction across the laser diode is
to prevent any "backlash" current pulses from damaging this
laser diode. A current monitoring probe is placed on the lead
to the laser diode to permit monitoring of the current pulses.
The actual circuit differs slightly from that shown in Figure 15
and is shown in Figure 16. The difference is designed to re-
duce circuit inductance which would slow down the rise time.
In order to further cut down on the rise time, it has been pro-
posed to construct the transmitter in a radially symmetriz
fashion as can be seen by the sketch shown in Figure 17. Note
that instead of one lumped capacitor, the total capacitance
has been split into five smaller parallel capacitors arranged
in a radial floral pattern. Three SCR's are used instead of
one with the expectation that more current can be pumped more
quickly around the circuit. Three SCR's were chosen as a com-
promise. Too many could introduce excess capacitance into the
circuit and cut down on the rise time. It is important to
note the overall coaxial symmetry of the entire transmitter as
it is hoped that this will significantly affect the overall
operation especially with respect to rise time.

These are the actual components finally decided upon and ob-
tained. An approximate 25 Kohm resistor is located in the
charging path to fix the RC time constant small enough to
allow recharging of the capacitors before the next laser pulse.
Five .004 ,f. capacitors arranged florally provide a total
capacitance of .020 xf. Sprague ceramic disc types were chosen
for their low inductance property. Three Unitrode GA-201
thyristors (SCR's), known for their fast rise time are used as
pulsers, Ref. 1. An SG-2007 infrared laser diode is used as
the actual light pulse transmitter, Ref. 2.
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The final assembly is very important in cutting down on
inductance as previously mentioned. Copper sheeting is
used as the return ground path. Flat sheets are less in-

ductive than round wires. The current pulse will go down
the center of the assembly and return on the outer path
through the copper sheeting.

Most recently, all the parts for the transmitter have
been obtained and final assembly is now in progress.
Practical considerations such as matching up a triplet of

SCR's are being looked into. Before actual pulsing of the
laser diode itself, a IN4004 diode will be used to test
the circuit. The characteristics of this diode are supposed
to be similar to those of laser diodes, Ref. 3. This same
type diode is also used for back protection of the laser di-
ode when it is placed in the circuit. By using a substitute
diode in initial tests it will be possible to adjust the
pulse parameters to fit the limitations of the laser diode.
In this way, a burned out laser diode can be prevented.

In the final operation with the laser diode in place, it is
hoped that a critical point regarding laser output pulse
rise time will prove itself. The current pulse to the laser
will certainly be adjusted for the fastest rise time. How-
ever, this is not the pulse involved in the time of flight
range measurement. The light output pulse of the laser is
the critical quantity. It is hoped that with a fast current
pulse, a light output pulse with a rise time in the order of
nanoseconds will be obtained when the current pulse exceeds
the threshold value of the laser diode, Ref. 2. This remains
to be seen in the test results.

In the near future, it is hoped that the assembly of the
transmitter be completed and put into test operation. A
suitable receiver must be const. :cted te aid in the testing
procedure.

PIN photodiodes have been proposed because they lend them-
selves well to rugged environment. A photomultiplier tube
is also being considered. These tubes have good sensitivity
and an amplification factor not found in photodiodes.

Also in the immediate future is the consideration of optics
for the transmitter and receiver. Questions such as whether
or not normal lenses will operate well in the infrared range
of the laser is one of many that must be answered.

With transmitter, receiver, and optics finally assembled
meaningful range measurement tests can be performed. From
this, a subsequent appraisal of this form of ranging can be
made.

Shown below if the projected schedule of work to be under-
taken.
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Assembly and. Receiver and Range Write-up and
Operation of Optics Testing Considerations
Laser Trans- for Further In-
mitter _ vestigation

February

March

April

May

C.l.b. ,-Surface Reflectivity, Laser Power Requirements and Receiver
Selection - Wesley Dull
Faculty Advisors: Prof. C. N. Shen, Prof. W. Moyer

Objective. The primary objective of this subtask is to ex-
perimentally study the characteristics of laser light reflec-
tion from surfaces similar to those that might be found on the
Martian terrain so as to determine the performance requirements
of both the laser rangefinder transmitter and receiver. A
second objective will be the optimum choice of receiver con-
sidering both electrical power requirements and the expected
dynamic range of the reflected laser light.

Progress Summary. Progress to date has been in the determina-
tion of what quantities must be experimentally measured to
accomplish the stated objective and also in the construction
of a test apparatus to perform the desired measurements.

Discussion. The basic problem to be considered is that it is
:not exactly known what reflected signal levels to expect as
thelaser rangefinder scans the Martian terrain at ranges varying
from three to thirty meters ahead of the vehicle. As can be SE in
from Figure 18, the incident angles measured with respect to the
local surface normal that the rangefinder might encounter can
vary anywhere from 0 degrees to 90 degrees. It is thus desired
to be able to measure some physical quantity of a given diffuse
reflector that will give the received signal level for a given
transmitter and receiver as a function of the position of the
laser transmitter and receiver with respect to the reflecting
surface.

A quantity which can be used to characterize reflections from
a diffuse reflector is the bidirectional reflectance ratio. It
was decided that the bidirectional reflectance ratio should be
measured experimentally rather than calculated analytically for
two reasons. First, models for diffuse reflectors from which
analytical calculations of the bidirectional reflectance ratio
can be made have been developed only recently. As a result,
there is not a large amount of data from comparisons between
analytically determined and experimentally determined bidirec-
tional reflectance ratios, Ref. 4 and 5. Secondly, the actual
analytical calculation of the bidirectional reflectance ratio
can be rather involved requiring detailed knowledge of the



39.

Fig.18. Range of Possible Incident Angles With Respect
to the Local Surface Normal
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characteristics of the diffuse reflector, Ref. 6.

Figure 19 shows the quantities that define the bidirectional
reflectance ratio along with the coordinate system commonly
used in association with the bidirectional reflectance ratio.
The bidirectional reflectance ratio is according to Ref. 4
defined as

S(1)

where d9i( ) and dA are defined in Fig. 19 and Nr(U;9~,) is
the reflected radiance in the directions 8 , cdue to the
incident beam at angle 9 . In terms of quantities defined
in Fig. 19

(d 0 A cos ( (2

Making use of the bidirectional reflectance ratio as defined
in Equations 1 and 2 from Ref. 4, the reflectance at any re-
ceiver position can be studied. The receiver position of
interest to this subtask, however, is one at which the re-
ceiver is located in close proximity to the transmitter.
Therefore, from examination of Fig. 19, it can be seen that
the bidirectional reflectance ratio should be evaluated at
approximately the angular position (ql;-5, 1800),

Once rP(;- , 1800) is evaluated for 0 ranging from 0 degrees
to 90 degrees, two useful pieces of information become avail-
able. First, if po (0;- 0,180 0 ) is normalized over the range
of .nterest for 9 , the complete dynamic range of expected
received signals can readily be read from a plot of normalized

O Ji ;-Y), 1800) vs (. Secondly, if the actual values of
P(Y;-0,180 0) are measured over the range of interest for

, the amount of power incident upon a given receiver at a
given position can easily be calculated given the transmitter
power, assuming that the transmitted power is focused on the
reflecting surface.

Since the bidirectional reflectance ratio is defined for
differential areas and differential solid angles, any measure-
ment scheme must assure that the illuminated portion of the
reflector surface and the light sensitive area of the receiver
be kept as small as possible. Although it is important to
keep the light sensitive area of the detector as small as
possible, i~ is also important that this light sensitive area
be much larger than the illuminated area of the diffuse re-
flector under test. This is to ensure that the solid angle
dbr illustrated in Fig. 19 is a meaningful quantity for the
measurement scheme being used. To ensure a meaningful solid
angle d)r, it was decided to use a small focusing lens ahead
of the detector to increase its light sensitive area.
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Detector

DetectorDetector

Detector~
Area
da

Focusing d I

Laser

Illuminated d
Surface Area

dA

1) The reflecting surface is in the XV plan-

2) The incident beam is in the ZY plane

3) dwi - Solid angle of the transmitter as viewed from the
reflecting surface

4) dWr - Solid angle of the receiver as viewed from the re-
flecting surface

5) dOj() - Incident radiant flux in .units of power that is
focused frorm the source located at angular po-
sition Y onto the test sample area dA

6) dgr(;0@,o() - Reflected radiant flux in units of power
in the directione,o due to the incident beam
at angle 4

Fig. 19. Bidirectional Reflectance Ratio Coordinate System
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It was decided to use a photodiode in a first attempt to
measure the bidirectional reflectance ratio. The main
reasons for this choice are that the photodiode is inexpen-
sive and a semiconductor, making it highly desirable to use
on the Mars rover. To use the photodiode to measure bidirec-
tional reflectance ratios, the device must be biased so as
to operate in a nonsaturated mode. As shown in Figure 20,
the photodiode operating characteristic that can be used to
measure bidirectional reflectance ratios is expressed in
Ref. 7 by the equation

I =KH (3)

where I, K, and H are as defined in Fig. 20.

The light from the laser transmitter used in the measure-
ments will be chopped mechanically so that the detector
response due to the laser light reflected from the reflect-
ing surface can easily be distinguished from the detector
response due to the background light.

The next problem is to express the quantities used to de-
fine the bidirectional reflectance ratio in terms of measur-
able angles, distances, and detector operating voltages and
currents. Figure 21 shows how the photodiode detector cir-
cuit of Fig. 20 can be used to measure d Oi(0 ). Assuming
that the laser beam is approximately uniform in its cross-
section and that the cross-sectional area of the laser beam
can be measured, the following expression for the radiant
flux of the laser beam can be derived:

The quantities in Equation 4 are as defined in Fig. 20 and
21. The notation Ii(9)) is used to indicate that the photo-
diode current in this case is measured for incident radia-
tion from the laser source at angle Y.

Figure 22 shows how the photodiode detector circuit of Fig. 20
can be used to measure Nr( ;- V,180). Making use of Equa-
tions 2 and 3,

(K) A (d W ) cos -5

where the quantities are defined in Fig. 19, 20 and 21. The
notation Ir( Y;- ,180 0 ) is used to indicate that the photo-
diode current in this case is measured for reflected light at
the angular position .( ;- f,180 0 ). Equation 6 assumes that
all of the light incident upon the focusing lens of cross-
sectional area dal is focused onto the light sensitive area of
the photodiode.
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I

Incident
Light

V0

/+7

1) I- Back bias diode current flow

2) K- Constant characteristic of the diode

3) H- Total incident radiation on the diode light sensitive
area divided by the diode light sensitive area
(units of power/area)

4) Vo - Amplifier output

5) Vo is proportional to I

6) I=KH - Nonsaturated operating characteristic of the pho-
todiode

Fig. 20. Photodiode Detector Circuit
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Half Silvered Mirror

-L
-Photodiode

Laser Beam

1) da- Light sensitive area of the photodiode

2) dAl- Cross-sectional area of the incident laser beam

3) r- Fraction of light incident upon the half silvered mirror
that is transmitted

4) d i(P)- Radiant flux of the laser beam (units of power)

5) d id(y)- Radiant flux of the laser beam (units of power)

Fig. 21. Measuring Incident Radiant Flux
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Photodiode

----- Focusing Lense

dwr

?- -z Reflecting Surface

1) dwr- Sol: I angle of the receiver as viewed from the re-
flecting surface

2) da- Light sensitive area of the photodiode

3) dA- Area of the reflecting surface under test that. is
illuminated by the laser

4) dal- Cross-sectional area of the focusing lense

Fig. 22. Measuring Reflected Radiance

----------. .. . . .. - -.... . ... . ..-.. . .. .... .. . . .. . .--. ... . _ . . . .....- • . . .. . . . . . .
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the photodiode.

Equations 4 and 5 can be substituted into Equation 1 to

arrive at the key equation for measuring the bidirectional

reflectance ratio for the receiver located at about the

same position as the transmitter:

I rA.) (r) r N 0- (6)
jA ,

The easiest bidirectional reflectance to measure is the

normalized bidirectional reflectance ratio. If 'im is

the angular position for which p( ;- V,1800 ) takes on

its maximum value as 9 is varied from 0 degrees to 90 de-

grees, the normalized bidirectional reflectance ratio is

given as

'P ( ;-P, \ o 0  (7)

This normalized bidirectional reflectance ratio can be ex-

pressed as

p _(8)

Figure 23 shows the test apparatus that will be used to

measure the normalized bidirectional reflectance ratio.

The apparatus is at the present time almost completed.

Plate "A" is used to hold the diffuse reflector under tests.
Structure "B" holds the focusing lens that focuses the laser

light onto the test sample. Box "C" contains the laser

traiismitter and receiver. The angle 0 is changed by pivot-

ing the two arms holding the laser transmitter, receiver, and
focusing lens about the bar to which plate "A" is attached.

Major problems to be faced in the short run future will be
in the actual performance of the measurements described above
and also in choosing some suitable method of classifying the
diffuse reflectors tested.

The following is a projected schedule for the period extend-
ing to June, 1974:

February March April May

Finish Test Apparatus

Perform Measurements

Choose Best Receiver

Based on Measurement Data



Fig. 23. Bidirectional Reflectance Ratio Test Apparatus
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C.2. Obstacle Detection, Terrain Modeling and Scanning Systems

C.2.a. Recognition of Three-dimensional Obstacles by an Edge Detection

scheme - Probyl Sanyal, Martin Reed

Faculty Advisor: Prof. C. N. Shen

Objective. In order to navigate autonomously on the Martian

surface, the proposed Mars roving vehicle, Ref. 8, must be

able to distinguish between-passable and impassable terrain by

means of a laser rangefinder which scans in a field approxi-

mately 3 to 100 meters ahead of the rover. Data obtained by

this means will be used to determine an accurate enough "range

image" of the terrain in order for the rover to choose the

safest path of travel. This task is specifically concerned

with the objectives of obstacle classification, identification,

and detection. This report discusses work done on an obstacle

detection system for this purpose, which is intended to process

the information obtained by the laser range finder to provide a

basis for a path selection decision.

Progress Summary. Two algorithms, one already existing in the

literature and one developed in this effort, were used to obtain

the outlines of obstacles from the "range image". Both of these

algorithms end with a thresholding operation. A theoretical ana-

lysis shows how a proper value of the threshold may be chosen,

given the type of irregularity of the terrain to be detected.

The analysis also shows how large the statistics of measurement

noise can be allowed without leading to false alarms, Ref. 9 and

10. Computer simulation of the schemes for the case of a hemi-

spherical boulder at mid-range have been very encouraging and

some typical results have been included. The research finding

is summarized in a paper, Ref. 11, entitled "A Practical Obstacle

Detection System for the Ma-rs Rover" by Reed, Sanyal and Shen.

This paper has been accepted for presentation at the Second

Annual Milwaukee Symposium of Automatic Control.

Discussion. It is assumed that a laser rangefinder will be used

as thb primary sensing device on the rover. The laser is ex-

pected to be a much lighter piece of equipment than the T.V.

camera. Fig. 24 shows how the laser scan is mounted on the

rover and how it works.

The laser is mounted on a mast at a height of 3 meters from

ground level. The on-board computer controls the direction of

the beam. By varying the elevation angle . and the azimuth

angle 0 , the laser can scan a desired area.

The time difference between transmitted and reflected beams

indicates the range. It is expected that the time required per

range reading will not exceed 1 millisecond. Thus, in one

second, or in the space of 1 meter traveled by the rover, about

a thousand range readings can be obtained and these may be as-

sumed to have been obtained from a stationary point.
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Normal to laser mast

Laser ---

Laser mast ----

Laser beams

Rover

Ground Obstacle

(a) Side view

8f -l Direction of
Rover Obstacle

Rover travel

(b) Top view

Fig. 24. The laser range finder
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The Range Matrix and Detection Scheme

(a) The Scan

The range data Zi,j obtained by varying the angles
13 and 0 can be stored in a matrix form with the
elements ordered according to the values of ,3 and
S. The value of e changes along the same row with
the column index j, while the value of 6 changes
along the same column with the row index i. This
matrix, Z, called the measurement matrix, forms a
"range image" of the scene ahead. In contrast to a
photographic image, where the elements of the image
are functions of the brightness of the scene, the
"range image" consists of distances of the points on

the scene from the point of measurement. Equation 1
shows the Z matrix.

* (1)

Z 1  Z 2

(b) The Sharp Change in Range Readings

The presence of sharp changes in the range values on
the Z matrix indicate the presence of obstacles. Al-
gorithms used to show up these sharp changes end wita a
thresholding operation, and the success of the algorithms
depend on the relative ease with which a proper threshold
can be chosen. Both algorithms tried appear to be quite
successful. To apply the normalized Laplacian, Ref. 12,
a new matrix Q is obtained by the following operation:

_ Zi-l,j + Zi+l,j + Zi,j- + Zi,j+l - Zi,j
Qi,j Zi-l,j + Zi+l,j + Zi,j-l, + Zi,j+l

(2)

Alternatively, a four directional ratio can be used with
a new matrix S obtained by the operation given below:

Sn Z " n n

Si,j + + (+
Zi,ji,j Zi,j Zi,j

(3)
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The normalized Laplacian is from the existing litera-
ture, while the four directional ratio was developed
specifically for this application.

Analysis of the Two Algorithms

Let Zi,j = ri,j + Vi,j (4)

where ri,j is the true range measurement and Vi,j the
additive noise in measurement.

Also let ri-1,j = (1+C(i-1,j) ri,j (5)

where Q(i-l,j indicates the fractional change in range ,

from point (i-l,j) with respect to point (i,j).

From Equations (4) and (5) one can write

Zi-l,j = (l+c\i-l,j) ri,j+Vi-1,j (6)

The measurements Zi+l,., Zi,j-l, and Zi,j+l can also be
expressed in terms of dI,j.

Using Equations (2) and (6), expanding the resulting
fractions in an infinite series, and dropping higher
order terms, we get:

For no noise, i.e. Vi,j=O for all i,j:

qi,j 4 k(Wi-,j+ i+l,j+i,j-1+i,j+1) (7)
for small C

If somehow all ( = 0:

Sv~ ~_" ) lVi i+l j V'Li.
qi,j 1-(1+ -)1-V i1 Vi+1 i V

ri,3 ri,j r1,j ri,j rij

(8)

Assuming that the noise V with each measurement is in-
dependent, zero mean, and with the same standard devia-
tion o-, one can write from Equation (8)

t 2 C 2
Var (qi,j) rij (9)

In a similar manner for the four directional ratio,
using Equations (3) and (6):

If there is no noise:

Si,j j 1+ i-j+i+j+i, j-l+i, j+) (10)

If somehow all oc = 0:

n (Vijll + V.)- -n2 V Vi-l1
si •,rj -n XSij + ri,j ri,j ri,j ri,j
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With the assumption of independent, zero mean noise
with standard deviation 07, a first order approxi-
mation of the variance of S-i,j can be shown to be:

Var(Si,j) cZ 2n (12)

ri,j

The foregoing analysis gives the means of choosing
the proper threshold, given the values of o. For
example, if two of the outer points (i-l,j) and
(i,j-l) lay outside the obstacle and the other three
points, including the central point (i,j), lay on the
obstacle, then one may assume

" >i-l,j 'i,j-1 > 0 andCCi+l,j -OCi,j+1 l 0 (13)

Then from Equation (7) with COil,j=Oci,j_l 0.04

Qi,j z k(0.004+0+0.04+0) = 0.02 (14)

Thus, the threshold may be set just below 0.02 if the

point in consideration is to be detected, i.e.

Tq ; 0.019 (15)

If the central point is assumed to be just outside the
obstacle with the other points as before, then one will
have a negative threshold value, and this is used to
determine points just outside the object.

If the four directional ratio method is used, then from
Equation (10):

Si,j 1+ (0.04+0+0.04+0) 1 + 1(0.08) (16a)

For n= 2: Si,j 1 + (0.08)= 1.04 (16b)

Notice that by increasing n, the apparent threshold
value can be amplified.

The variances given in Equations (9) and (12) give an
indication of how large a measurement noise may be accom-
modated by the algorithms. Suppose it is desired that
the threshold lies outside the one a limit of the varia-
tion in q. Then from Equations (9) and (15)

r- =- 0.019 (17)

i,j
or OG = 0.019 ~ ri,j

Obviously, at longer ranges, higher measurement noise
may be allowed.

The values of CK may be obtained from a physical model
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obstacles and terrains.

Simulation Results

Fig. 25 illustrates the case study for all computer
simulations to date. The rover is on a perfectly
flat terrain, with a hemispherical boulder of one
meter radius directly in its path of travel, located
30 meters horizontally from the laser mast. A com-
puter program was written to generate the range data
points in the "range image", given the elevation
angles 13 and the azimuth angles e as inputs. Fig. 26
shows the resultant "range image", both when the
measurements are undistorted and when they are con- ..
taminated by zero mean, 5 cm standard deviation,
Gaussian noise. .The reason for selection of V 

= 5 cm
was that this was one of the desired accuracies of the
laser rangefinder. The limits on Z3 and & should also
be noted; they were chosen so as to scan the entire
boulder plus a small area of terrain surrounding the
boulder.

In Fig. 27 we have the matrix of Oli-l,j values, which
is the same for the noiseless and noisy cases. The
fact that they are the same should be expected, since
from Equation (17) for Ti,j = 30 meters, we have that

crallowable = Tq 2 ri,j. With Tq on the order of .02,
this gives QOallowable - .9 whereas the G- used is only
.05. An error this small will obviously have little
effect on the edge detection algorithms used.

Fig. 28, 29 and 30 illustrate the resulting matrices
after the three algorithms (four directional ratio with
n=l and n=2, and normalized Laplacian) have been applied
to the "range image". Once again, the results are the
same for both the noiseless and noisy cases.

Finally, in Fig. 31, 32 and 33 we see outline of the
boulder after the thresholding operation has been applied
to the previous matrices. By proper choice of thresholds,
all three algorithms yield the same picture. The lack of
a bottom edge is a characteristic outcome of these algori-
thms, and will have to be approached by a different method.

Future Problems

1) As mentioned at the end of the last section, the bottom
edge is completely missed by the algorithms used. This
can be a serious problem for without a bottom reference
the rover will have a difficult time trying to decide
how far and how high one front of the boulder is, and
thus how much of an obstacle it represents. An alternate
scheme must be devised to detect this bottom edge with
the same accuracy as the rest of the obstacle.
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CALCULATED RANGE DATA FOR A HEMISPHLiICAL BOULDER (1.0 METER RADIUS) AT A DISTANCE OF 30 METERS FROM MARS ROVER

BETA MAX = ..6 OEGkRES BETA MIN = 3.0 OEGREES REIA INCREMENT = .15 DEGREES
THETA AXN =-2.0 DEGRE-EGEES T.ETA MIN =-2.0 DEGREES THETA INCREMENT = .2j DEGREES

__R( 1, )-----(EA IN41,q THETA MIN_ .___. . . R( 1,2 ..-----. (ETA ( 2IN, THETA MAX)
R(25,1 )-----(bETA MAX, THETA MIN) R(25,21)-----(BET'A MAX. THETA MAX)

UNDISTORrED BY NOISE
57.25 57.25 57.25 57.5 57.25 57.25__57.25 57.25 57.25 57.25 57.25 57.25 57.2557.25 57.25 57.25 57.25 57.25 57.25 57.25 57.25
5.3 5.3 5.3 5.54.63 54.63 54.63 54.63 l4. 5.63 54.3 54.63 5.63 54.63 54.63 54..03 54.63 54.63 5/t.63 54.63 54.63 54.63 54.63 54.63 54.63
52.13 52.13 52.1. 52.13 52.13 52.13 52.13 52.13 52.13 52.1 3 2.13 52.13 52.13 52.13 52.13 52.13 52.13 52.13 52.13 52.13 52.13
49.88 49.88 49.8 8 4 9180. 98 4 .88 49.3 49.83 49.8 49.8 49.88 4988 4 9.88 49. 3 49.88 49.38 49.38 49.88
47.15 47.75 47.7 47.15 47.75 47.75 47.75 47.75 47.75 47.75 47.75 47.75 47.75 47.75 47.75 47.75 47.75 47.75 47.75 47.75 47.75
45.88 45.88 45.88 45. 8 45.68 45.83 45.88 45.88 45.88 45.88 45.88 45.88 45.83 45.88 45.88 45.88 45.88 45.88 45.88 45.88 45.88
44.13 44.13 44.13 44.13 44.13 4.13 44.13_44.13 29.9L 29.84 29.84 29.84 29.91 44.13 44.13 44.13 44.13 44.13 44.13 44.13 44.13
42.5U 42.50 4.0 42.50 4Z.5O 4 2.5u 29.88 29.77 27.69 29.66 29 29.66 29.69 29.77 29.38 42.50 42.50 42.50 42.50 42.50 42.50
4 0.94 40.94 40.94 40.94 40 .94 29.t3 2-.70 29.63 2.5S 29.55 29.53 29.55 29. 6 29.63 29.70 29.83 40.94 40.94 40.94 40.94 40,)4
39.50 39.5 39.50 39.50 29.8i 29.o7 23.58 29.52 29.47 29.45 29.44 29.45 29.47 29.52 29.58 29.67 29.83 39.50 39.50 39.50 39.50
38.25 38.25 38.25 29.91 29.69 29.58 29.49Z 29.44 29.40 29.38 29.38 29.38 29.40 29.44 29.49 29.58 29.69 29.91 38.25 38.25 38.25
37.06 37.06 37.06 29.75 29.59 29.50 29.42 29.38 29.34 29.32 29.31 29.32 29.34 29.38 29.42 29.50 29.59 29.75 37.06 37.06 37.06
35.88 35.88 29.38 29.66 29.52 29.44 29.38 29.32 29.29 29.27 29.27 29.27 29.29 29.32 29.38 29.44 29.52 29.66 29.88 35.88 35.88
34.75 34.7) 29.17 29.59 2').48 29.3 20.33 29.29 29.25 29.2 293 29.23 29.23 29.25 29.29 29.33 29.39 29.48 29.59 29.77 34.75 34 .75
33.75 33.75 29.70 21.54 29.43 2Q.36 29. 0 29.25 2-.22 20.21 29.20 29.21 29.22 29.25 2,.30 29.36 29.43 29.54 29.70 33.75 33.75
32.75 29.91 29.5 2;.50 25.40 29.33 29.27 24.23 29.20 29.18 29 .18 29.18 29.20 29.23 29.27 2q.33 29.40 29.50 29.65 29.91 2. 75
31.88 2').8' , 9.02 29.4 29.38 29.31 29.25 29.21 29.18 29.17 29.16 29.17 29.18 29.21 29.25 29.31 29.38 29.48 29.62 2q.84 31.88
31.06 29.81 29.0O 29.46 29.37 29.30 29.24 29.20 29.18 29.16 24.15 29.16 29.18 29.20 29.24 29.30 29.37 29.46 29.60 29.81 31.06
30.25 29.80 29.59 29.46 29.36 29.29 2c9.24 29.20 29.17 229.15 9.15 29.15 29.17 29.20 29.24 29.29 29.36 29.46 29.59 29.80 30.25
29.44 29.44 25.44' 29.44 29.37 29.29 29.24 29.20 29.18 29.16 29.15 29.16 29.18 29.20 29.24 29.29 29.37 29.44 29.44 29.44 29.44
2o.69 28.69 2d.69 28.69 28.o' 2.689 28. 28 .69 28.69 28.69 21.69 28.69 28.69 28.69 28.69 28.69 2.692.9 28. 289 2.9 23.69 28.69
2d.03 28.03 28.U3 28.03 26.03 2H.03 2:.03 26.03 2~.03 28.03 28.03 28.03 28.03 28.03.03 28.03 28.03 23.03 28.03 28.03 28.03 28.03
27.38 27.36 27.38 27.38 27.38 27.38 27.38 27.38 27.38 27.38 27.38 27.38 27.38 27.38 27.38 27.38 27.38 27.38 27.38 27.38 27.38
26.69 26.69 26.69 25.69 26.69 26.69 26.69 26-69 25.69 26.69 25.69 26.69 26.69 26.69 26.69 26.69 26.69 26.69 26.69 26.69 26.69
26.13 26.13 2o.13 26.13 26.13 26.32 13 26.1_3 26.13 2~13262.13 26.13 26.13 26.13 26.13 26.13 26.13 26.13 26.13 26.13 26.13 26.13

CON TAIINATED BY ZERO MEAN, .05 METER STANDARD DEVIATION, GAUSSIAN NOISE
57.22 57.25 57.27 57.26 57.23 57 .2', 57.31 57.26 57.22 57.30 57.20 57.29 57.35 57.22 57.28 57.24 57.36 57.27 57.35 57.27 57.26
54 . 1 54 . 2 5 .69 5 4.61 54.57 54.60 54.58 54.56 54.61 --54.67 54.64 54.63 54.69 54.57 54.72 54.62 54.67 54.65 54.68 54.61 54.74
52.21 52.1s 52.26 52.14 52.04 52.14 52.13 52.10 52.08 52.05 52.19 52.03 52.2) 52.10 52.17 52.06 52.15 52.14 52.16 52.12 52.15
44.7 4q.92 49.90 49.39 49.77 4).,18 49.69 49.95 49.87 49.94 49.87 49.91 49.94 40.84 49.88 49.93 49.84 49.78 49.99 49.88 49.96
47.80 47.7 41.77 41.72 47.77 47.j2 4.7.69 47.64 47.79 47.73 47.74 47.63 47.67 47.81 47.86 47.73 47.73 47.75 47.78 47.31 47.70
45.99 45.85 45.89 t5.67 45.94 45.90 45.88 45.79 45.93 45.89 45.85 45.91 45.87 45.93 45.95 45.81 45.97 45.90 45.84 45.77 45.57
44.10 4.11 44.1 44.12 44.12 44.16 44.12 44.09 29.93 29.82 29.75 29.84 29.84 44.11 44.10 44.06 44.17 44.09 44.10 44.12 44.13
42.1 42.45 42.50 42.47 42.51 42.41 29.9 29.79 29.6 29.6429.67 29.69 29.71 29.59 29.77 29.87 42.47 42.47 42.59 42.44 42.53 42.51
40.96 40.91 40.98 41.05 40.88 29.85 29.79 29.53 29.47 29.53 29.59 29.47 2:9.58 29.63 29.73 29.79 40.86 40.90 40.94 ,0.88 40.89
39.44 39.49 39.55 39.47 29.82 29.75 29.56 29.47 29.41 29.41 29.49 29.46 29.53 29.57 29.60 29.69 29.85 39.49 39.47 39.53 39.41
S38.21 38.18 38.27 29.8 29.70 29.58 29.44 29.5 29.38 29.33 29.36 29.3 29.42 29.39 29.56 29.64 29.71 29.93 38.30 38.25 38.35
37.07 37.11 37.11 e9.72 29.59 29.'>29.36 29.29 29.32 29.34 29.36 29.18 29.42 .29.40 29.47 29.48 29.59 29.67 37.06 36.95 37.07
35.87 35.87 29.88 29.69 2,.5U2 9.42 Z5.33 29.25 29.27 29.26 29.35 29.29 29.25 29.32 29.33 29.34 29.49 29.50 29.82 35.93 35.84
34. 71' 3.;75 ' 2 -29.5j9-29.40 _2_9.32 293-29 13 9.13 29.23-29.25 29.26 29.23 29.29 29.28 29.35 29.25 29.45 29.61 29.79 34.73 34.79
33.77 33.69 29.66 29.57 29.41 29.32 29.41 29.29 29.22 29.28 29.27 29.20 29.23 29.29 29.33 29.36 29.46 29.57 29.61 33.79 33.72
32.69 29.83 29.69 29.49 29.49 29.29 29.18 29.16 29.23 29.30 29.24 29.22 29.12 29.24 29.35 29.25 29.41 29.53 29.58 29.96 32.80
31.19 29.8 29.61 29.4- 29.43 2.36 2'.-19 29.1729.18 29.12 29.13 29.10 29.14 29.20 29.28 29.31 29.32 29.45 29.64 29.78 31.80
31.11 20.d2 2 .-37 29.46 29.35 29.30 2M.30 29.14 29.12 29.20 29.18 29.15 29.20 29.20 29.19 29.31 29.36 29.51 29.55 29.82 31.01
30.25 29.72 29.59 29.'.0 29.29 29.2' 29.20 29.12 29.12 29.20 29.17 29.16 29.14 29.17 29.30 29.28 29.37 29.35 29.54 29.36 30.22
29.51 29.4') 29.47-29.47 2.37 29.26 29..24 29.17 2.25 29.10 29.09 29.15 29.30 29.15 29.27 29.26 29.33 29.32 29.48 29.45 29.49
28.72 28.77 28.63 28.-5 2V.72 28.77 28.79 28.82 28.68 28.69 28.63 28.69 28.72 21.68 28.67 28.61 28.75 28.69 28.79 28.60 28.75
27.94 27.y. 28.00 28.05 27.97 27.95 28.07 28.03 28.00 27.95 28.00 28.02 28.01 28.12 28.00 28.05 28.08 28.05 28.09 27.98 27.97
27,3827 7.33 27.? 21.42 27.34 27.20 27.36 27.34 27.4727.36 27.37 27.41. 27.41 27.31 27.31 27.36 27-39 27.35 27.28 27.39 27.'8
26.71 26.69 Z6.fb 26.74 26.70 29.60 24".65 26.66 26.66 26.73 26.79 26.68 26.69 26.70 26.64 26.70 26.69 26.71 26.62 26.68 26.71
26.24 26.12 26.12 26.08 2c.' 26.6O 2.10 26.12 2b.14 26.13 26.21 26.16 26.04 26.15 25.07 26.28 26.15 26.10 26.12 26.13 26.12

Fig. 26. The "Range Image" Matrices



MATRIX OF ALPHA1(I-1,J) VALtES;

i = 2 TO 25 J TO 21-- -

0.049 0.040 0.048 0.O8 0.048 0.048 0.048 0.048 0.C48 0.C48 0.048 0.048 0.C48 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048
0.043 80.04 0.048 0.048 0.048 0.04 004048 0.048 0.048 0.048 O.C46 0.048 3.048 0.048 0.048 0.0-8 0.048 0.048 Q.048 0.048 0.048
0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.0450.045 0.045
0. 45 0.045 0.0-45 0./-5 u.045U0.-45 0.o U.045 0. 045 0.045 0.0'0 0.045 0.C045 :,,45 0.0 5 0.045 0.045 0.045 Z?045 0.0450.045.
0.041 0.01 0.01 0.0 .0.041 0041 0.0.041 O 1 Uo.i041 .041 0.041 0.041 0.0,I U.C,1 0.041 o.04 0.041 0.041 0.041. 0.041.0.041 0.041
0.04 0.040 0.040 J.J40 0.040 0.040 0.C40 0.040 0.5,4 0.537 0.537 0.537 0.534 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.043
0.033 O.03d 0.030 0.038 0.038 0.03 0.77 0.4'2 U.007 0.006-0.006 0.006 0.CC7 0.482 0.477 0.038 0.038 0.038 0.038 0.038 0.038
0.03 0.03 .30.03 0.038 0.038 0.0j3 0.425 0.00 0.005 0.004 0.004 0.004 0.004 0.004 0.005 0.006 0.425 0.038 0.038.0.038 0.038 0.038
0.03 3 0.036 0.036 U.o36 0.372 0.005 0.C00+ 0.004 0.003 0.003 0.003 0.003 0.C03 0.004 0.004 0.005 0.372 0.036 0.036 0.036 0.036
0.031 0.0J3 0.033 U.21 0O.0( 60.003 0.00 .03 0.03 0.0L2 0.003 0.002 0.003 u.C02 0.003 0.003 0.003 0.005 0.32,1 0.033 0.033 0.033
U.031 0.032 0.032 0.005 .C(03 0.003 0.002 0.002 0.002 0.00 2 2 0.002 0.002 0.002 0.002 0.003 0.003 0.005 0.032 0.032 0.032
0.033 0.033 0.241 0.03 0.002 0.C002 0.O02 0.00Z 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.241 0.033 0.03-
0.032 0.032 0.004 0.002 .0.002 0.002 0.o0.001 0.001 0.0010.c1 OOol O.CCI 0.001 0.002 0.002 0.002 0.002 0.004 0.032 0.032
0.030 0.0o3 0.002 u.U02 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.030 0.030
0.031 0.129 0.002 0.01: 0.001 0 0. 00 0.00 .001 00.0001 0.001 .0.001 0.001 0.01 0.001 0.00.001 0.001 0.01 0.001 0.001 0.001 0.002 0.129 0.031
0. 0 27 0.002 0.001 0.1 .001 0.001 0.201 0.001 0.001 0. 001 0.001 0.001 0.CO 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.027
O.U02 0.0J U.001 u.)u01 0.U 0 . 000 0.000 U.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.026
0.027 0.00) 0.J0U 0.000 0.000 0.000 0.000 0.00, 0.000 0.000 0.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.027
0.023 0.012 0.005 O.o ) -0.. 00 0.

0 
. . U . 0 -0.000-0.000 0.0 -0.000-0.000 0.0 0.0 0.0 -0.000 0.001 0.005 0.012 0.028

O.026 0.026 0.UZ6 0.J26 0.024 0.021 .C019 0.018 0.017 0.016 0.016 0.016 0.017 0.018 0.019 0.021 0.024 0.026 0.026 0.026 0.026
0.021 U.023 0.023 0.023 0.023 0.023 '.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0. 0.2300.02 0.023 0.023 0.023
0.024 0.02 0.024 .J24 U.024 0.024 0.024 0.0,4 00.02 0.024 0.024 0.024 0.C24 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024
0.026 0.02, 0.026 U.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.025 0.026 0.026 0.026 0.02s
0.022 0.022 0.02e 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.22 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022

Fig. 27. Matrix of C(i-l,j) Values
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FOUR DiRECTIONAL RATIO EDGE DETECTION SCHEME, WITH N=1

1.00 1.00 1.00 1.00 1.00 1. O 1.00 1 1.0000 1.00 .000 1.00 1.00 1.00 100 1.C- 1.00 1.00 1.00 1.00 1.00S.- 1 i o j I _ o 0 -00-1-00----Li)---L 0--L.O.0_.0 .00L.00 .001.00 1.00 .C.00. 1. 1.00 1.00 1.00 1.00 1.0 1.000 ?.03 1.00 1.0 0 1.00 1.00 1.00 1.00 1.00
1.00 1.09 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00_1.00 1. 0 -1--.00A -0__.0 I a_. 1 3__-1. 00-0. ?2- -0-92_ -0.0 . .2 2-0.. 92 .. 0. 2_. 1.00i 00 1... 1. 00_ .O_1.00 _l .00_-. 00 1.... 0 01.00 1. 1.00 1.0 1.0 0 0.93 0.P5 1.25 1.1- 1.14 1.13 1.25 0.05 0.93 1.00 1.00 1.00 1.10 1.001.00 1.0.) .00 1.00 0o.6 1.22 1.12 1.00 1.o0 1.00 1.00 1.00 1.12 1.22 0.86 1.00 1.00 1.00 1.00S.i00 1 .00. _ .8_1 _.2 I .__00_ .00 .00-_. 0 .. 00- .0- 1.0- -001. 0 .12 0. 8 71.0 ._ O 1.__ 001 - .1.30 1.00 0.89 1.11 1.u0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.17 0.89 1.00 1.001.00 0.95 1.15 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.15 0.94 1.00J.- 01 0 1_.1 - O_ .D_ OLO - I .0 /1. 001.00 1.01 -I.00_1 .03--1 . 00-. .00 - 1.00- 1.6 _0.91- ..00
0.95 1.11 1.0 . 1.00 1.u0 1. 1.00 1.00 1.03 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.11 0.960. 96 1.0 1.00 1.00 1.00 1.00 1 .0 100 1.00 1.00 1J 1.00 100 1.00 1.00 1.00 1.00 1.00 1.04 0.97i .0.95 L.0-3 .1.00-.i)0_ L _.OLD...i 0 1 .00I. 1.0. 1_. 00_ 1.00 1.00 3. 1. ._ .00 -1.00 --1.00 1__.00-.1 04 ..0.95 . _._ -1.05 1.00 1.00 1.ju 1.00 1.0 1 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.051.02 1.00 1.00 1.o0 1.uO 1.00 1.00 1.00 1.00 1. 1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.02-. 10 .0 -1. O0. i 0_ - L. 0__.O. . 1. 1._. o .00_.1.00- .. 00_ _1.00_1 .00 .n 00_ J .00- I.0 1.01 ___1.uO 1.JO 1.00 1.U0 1.,)0 .00 1.uO 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.001.00 0.19 0.99 0.99 1 .0 1.9 1.0 1.0 1.0.09 1.00 1 .0 ) 1.00 0 .9 1.00 0.9 9 1.00 0.99 1.00
I . ,iL D t -O L 1. i _ 99 . ) 0__ 0_. 00 i1.00-1 .0 ._. I. 00-1. 0__ 1,00--1..00 C 1.00 3 1. 00 1. 001.00 .I.u I.U 1.0 1.00 1.00 1.0 1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.001.00 1.01.0 .0 1.00 1.0000 1.00 100 1.00 1.0 1 . 00 1.0 .00 .00 1.00 1.00 1.00 1.00 1.00 1.00 1.00_. _.il__ L. . _L_l00oLo.jO L014-.00--L..0--1 .00 1..00-. 00 1,)0--1.00 .1 0 . I 00 1. 00 -10 . 0---1 . 00 -. . ___00

Fig. 28. Four Directional Ratio Edge Detection Scheme, with n 1
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NO3 MALIZEO LAPLACIAN EOGE DFTECTION SCHEME
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Fig. 30. Normalized Laplacian Edge Detection Scheme



EDGE ENHANCEMENT BASED ON FOUR DIRECTIONAL RATIO (N=1I

Sx x x
X X

. X X

X X
x x.

Eig. 1 -31 Edge Enhannemeadn Four Directional Ratio (n = 1)

FDGE ENHANCEMENT BASED ON FOUR DIRECTIONAL RATIO (N=2)

.. xxxxx..
x --
.x x xx.

.X X
X x..

x x
x 'C
X X
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EDGE ENHANCEMENT BASED ON NORMALIZED HAMILTONIAN
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2) The elevation and azimuth angles were intentionally,

limited to include only the boulder and a small

border surrounding it in the "range image". 21
separate azimuth angles, each .20 degrees apart, and

25 separate elevation angles, each .15 degrees apart,

were implemented. This gave the "range image" the

characteristics of high point density, but over a very

limited region. Future requirements from the group
working on the measurement scanning scheme may decrease

the available point density, due to restrictions on the

laser scan capability or in order to widen the field of

view, and the algorithms may be affected by this limita-

tion.

3) The algorithms have only been tested for the one

specific case given. What will happen for bigger or

smaller boulders, closer or farther away? Will one
algorithm then work better than the others? These

questions will have to be investigated.

Timetable for future work

February March April May

Introduce different size
and location boulders

Develop an algorithm for

the bottom edge of ob-

stacle

Introduce other obstacles

Determine minimum "range
image" point density re-

quirements

Write final report

C.2.b. Parameter Estimation for Terrain Modeling from Gradient Data -
K. R. D'Angelo
Faculty Advisor: Prof. C. N. Shen

Objective. There were two primary objectives undertaken in
the area of terrain modeling. One objective was to develop
a method for representing sections of the Martian terrain
by curved surfaces, using two successive laser scans. The
second was to find a way of evaluating the proposed model
and establishing limits for the scanning parameters.

Progress Summary. A two step modeling procedure was de-

veloped. The method uses height, location and gradient data
found from sixteen data points. The model formed is a third
degree, two dimensional polynomial. A complete error analysis

of the modeling method was carried out. The computer program
to implement the analysis is now being completed.
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Discussion

a) Modeling Procedure - Step 1

The first step in the modeling procedure is to model

stochastically a plane from frou data points, Ref. 13.
This plane is formed in the (h", a", b") coordinate system
attached to the vehicle and then transformed to the (h,a,b)
coordinate system which is aligned with the local vertical,

Fig. 34. Four planes are modeled in this way. Each plane

yields the height, location, cross-path slope, kh/bA,

and in-path slope, ahX, at the center point, p,n, Fig. 35.

b) Modeling Procedure - Step 2

Once four planes have been modeled, a new coordinate sys-

tem is formed, by shifting the axis so that the point P' is

located at (0,0) in the aTb' system, Fig. 35. This shift

improves the model's accuracy and simplifies calculations.

To represent the terrain, the two dimensional third degree

polynomial

h f(a, b) = C + C a + C01 b + C a /2
00 10 01 20

+ C a + 2 b 2/2 + C a 3 /6 (1)
11 02 30

+ C a 2/2 b + C a b 2 /2 + C 3/6
21 12 03

was chosen where the C. s are unknown parameters which must
be determined in order to represent the surface. Expressions
for bd and &/f can easily be found. Because of the co-
ordinate shift, three parameters are found immediately

h = C 0 ( h/%) = Cl0 (bh) = C (2)

Since there are four pn points and at each pn point the height,
th/3 , andbhb are known, 12 equations can be written. If
we eliminate the three above equations, Eq. (2), then a matrix
equation

h = A C (3)

can be written where h is a 9 element vector containing

hi i' h)i and C0 C0 where i = 2,3,4. A
i-'i' and 00' 10 P 01'

is the coefficient matrix, and C is the vector containing
the 7 remaining unknown parameters.

This system of equations is overdetermined and must be solved
stochastically. This is done by least square approximation
which results in

+T -T1h~ (4)C =(A A) A h (4)



hb

data
ehice 'point

Fig. 34. Thi figure shows the three measured quantities, R, P and ,
the two coordinate systems, and the transformation angles 9 and .



modeled p p

surface

h

aa

Fig. 35. This illustration shows the location, height and two directional

derivatives for each center point. It also shows the position of

the a , bY-coordinate system.
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Once C ,has been found by Equation 4 then the surface
polynomial-, Equation 1, can be written. The gradient of
this surface can then be determined immediately as:

S = Gradient = +3 (Jh2] 2 (5)

c) Error Analysis - Step 1. - Error covariance matrix
for the data points. This and the following sections out-
line the procedure for finding the standard deviation of
the gradient for the modeled surface.

The first step is to find the covariance matrix for the
coordinates, a", b", h" at each of the sixteen raw data .
points. This is found as a function of the standard de-
viation of the measured quantities, R, /3 and 3.

d) Error Analysis - Step 2 - Error covariance matrix
for modeled planes. The covariance matrix for the slopes
of the modeled planes are found next. These four matrices
are a function of those found in Step 1.

e) Error Analysis - Step 3 - Error covariance matrix
for the center points. This step involves finding the co-
variance matrices for the center points, pn. To do this
we must first find the covariance matrix of the variables
at the center point (a"n, b"n, hin, ,hi ~l ) in the

P p , p ,n
(h",a",b") coordinate system.

Next we must transform this matrix into the (h,a,b) co-
ordinate system. This is done by use of a transformation
involving a matrix D, which is a function of the angles ,
and § , Fig. 34.

f) Error Analysis - Step 4 - Error covariance matrix
the model parameters. This step nvolve finding the co-
variance matrix for the Cij parameters found in Equation 1.
This involves use of all four covariance matrices found in
Step 3.

g) Error Analysis - Step 5 - Error covariance matrix for
the gradient. This step yields the covariance of the gradient.
To do this, first the covariance matrix of the slopes, TM/Ac.
and h±b/, must be found. This matrix is a function of the
matrix found in Step 4.

Finally, the covariance matrix of the gradient is found
using the above covariance matrix. The standard deviation
can then be found directly, Note the standard deviation of
the gradient is a function of the point under consideration
and varies accordingly.
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Conclusion

The modeling method described above provides a means for
modeling the terrain, which makes efficient use of the
data points. This is important since there is a limit
to the number of data points which may be used. The data
point spacing may be varied to change the amount of detail.

This procedure also requires a relatively small amount of
calculations. Since time is an important factor in the
path selection system and the number of data points are
high, calculations must be performed quickly.

'By using the two values for slope at a data point it is
believed that this model will follow the slope contour
more closely than a model using height data only.

With the standard deviation of height and gradient at
points on this surface found, limits can be set on the
parameters used to determine data point spacing and loca-
tion. It will also be used to determine which method of
arranging the data points is optimum for modeling. These
applications are presently being evaluated and the results
should be available soon.

Future Problems

The computer program for the error analysis will have to
be debugged before meaningful data can be produced. Once
the data is available, the problem of parameter optimiza-
tion and data point spacing can be investigated.

.Once the data point spacing has been set the resolution of
the proposed model can be tested to see what range of
obstacles it can detec.

Time Schedule

February March April May

Computer program for
error analysis

Parameter optimization

Investigate model re-
solution

Project report
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C.2.c. Scanning Scheme for a Laser Rangefinder - D. Scanlon
Faculty Advisor: Prof. C. N. Shen

Objective. The major objective is to develop a comprehensive
scheme by which the terrain will be scanned by the MRV's laser
rangefinder. In other words, given certain constraints the goal
is to find the best way of collecting the range data via the
laser scanning system. Some of the constraints being dealt
with are errors due to data point spacing, the vehicles physical
capabilities, limitations caused by the laser scanning hardware,
and the time necessary to collect and process the data. At the
present time there are two different methods of processing the
range information: terrain modeling and edge detection. The
needs of the two methods being quite different, they will have
to be treated separately, at least for the present.

Progress Summary. The progress that has been made so far is
with the study of a scanning scheme for use in terrain modeling.
Briefly, an attempt was made to design a scheme in which the
transmitting angles of the laser changed by equal increments for
each scan. With this feature the scheme is more readily imple-
mentable by some physical scanning systems. This goal proved
impossible to realize, resulting in a scheme somewhat less than
desired. The chief reason for the difficulty encountered lies
in the fact that the standard deviation of the gradient (impor-
tant in terrain modeling, meaningless for edge detection) rises
sharply as the measurement point spacing becomes smaller, and as
the points are taken closer to the vehicle. This also means that
there is a trade-off involved between obtaining a high point
density for maximum information and reducing the point density
for greater accuracy in calculating the gradient.

Discussion. Fig. 36 shows the proposed method of a single scan
for terrain modeling. The dots of the figure signify "measure-
ment points" or points where range and angle information is.
known as a direct result of the laser scan. The rectangles re-
present "data points" which are determined by four surrounding
measurement points and have associated with them a height, an
in-path slope, and a cross-path slope. It is desirable that
the measurement points be taken in the "W" format so that the
data points are determined by four measurement points obtained
very close together in time thereby eliminating error due to
movement of the vehicle. Four data points are then used to model
a section of the terrain (shown in dotted lines) with a polyno-
mial. Fig. 37, a view looking down on the rover, essentially
defines Aa andLb (in meters) and AG (in degrees). It has been
determined that the scan is to be from three to thirty meters in
front of the vehicle. The rover should be able to see enough
terrain at the three meter range to at least equal its own width.
If the vehicle is 2 to 3 meters wide then a 60 degree scan would
be needed to accomplish this. For the present time this sweep
should be no larger than this due to angle limitations of scan-
ning hardware.

A side view of the rover, Fig. 38, defines A (degrees) and
shows the laser height to be three meters. A major assumption
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'p----b 1

Fig. 38. Side View

Fig. 39. Rover will not know if boulder is too high to
climb until it is 10 meters closer
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which should be noted is that all calculations and results

are derived here for level ground for our preliminary study

only.

Given that we want to model the terrain from three to thirty

we run into the problem pictured in Fig. 39 assuming a

boulder or steep incline is located at the thirty meter point.

Knowing also that the vehicle is capable normally of climbing

a 0.4 meter step, it can be shown that the rover will not be

able to recognize the boulder as being or not being 0.4 meters

high until it is at least ten meters closer. This effect tends

to reduce the rover's decision-making ability in the 20-30

meter range. As will be seen later in Table I, one extra scan

beyond thirty meters fits nicely into the scheme by extending

the rover's view by the needed ten meters and allowing the

scans to be doubled-up as required by the modeling scheme.

Along the same line of thought, the measurement point spacing

should be such that "boulders" of height over 0.4 meters are

not totally bypassed by the scan, Fig. 40. The scheme of

Table I is shown to have the necessary measurement point spac-

ing to avoid this problem. The boulder heights listed in the

last column were calculated from the relation 31, .

Certainly the most important figure is Fig. 41, a set of

curves of standard deviation of gradient versus distance from

vehicle, Ref. 10. The standard deviation of the elevation

(3 ) and azimuth (4) angles was assumed to be one minute, an

obtainable accuracy, and the standard deviation of the range

was set at five cm., an accuracy hopefully obtainable. Associ-

ate with each curve of course is an increasing measurement point

spacing as the distance from the vehicle is increased. Starting

with the curve on the left the measurement point spacings repre-

sented are:

4a 4b

Curve No. 1 .45 - .8 0.4 - 1.0

Curve No. 2 .45 - .65 .5 - .9

Curve No. 3 .38 - 1.4 .2 - 2.4

Curve No. 4 .4 - .8 .25 - 1.0

Although it is desirable to get as much information as possible,
it can be seen that making the measurement point spacing too

small results in a large uncertainty in the gradient. On the

other hand, placing the points far apart for a small standard

deviation in gradient gives less meaningful results since much

terrain has been overlooked. Table I represents a possible

compromise. It can be seen that equal angle increments are

not wholly obtainable and the major region of difficulty is that

from 3 to 9 meters. It should be noted that the aO. column is a

rough estimate. Since the goal of equal angle increments is not

met anyway, the sections that are now equally incremented do not

have to be religiously kept that way. A slightly better measure-

ment point spacing is obtainable at the expense of breaking up
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Fig. 40, Scan misses boulder because A, is too large
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Fig. 41. Standard deviation in gradient vs distance from

vehicle on flat surface
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the equal increments. The Aa column is based on fifteen
points per line or thirty points per scan resulting in a
total of 480 measurement points. Hence, at the estimated
time needed per point of one millisecond, the entire scan
will take only one-half second, making the vehicle movement
during that time a nearly negligible one-half meter maximum.
The rover can then be given five seconds for computation
purposes as it travels along before the next scan. This
will give it a chance to scan an area from 23-30 meters
three times before crossing it. Due to the inherent in-
accuracies from fairly large measurement point spacing this
kind of repetition is desirable. Provisions can easily be
made for a higher scanning frequency during turning or tra-
versing steep slopes.

Future Work. A scanning scheme suitable for terrain model-
ing does not lend itself well to the edge detection approach.
Based on current work with edge detection, Ref. 11,, the total
number of points in the rover's field of vision would be on
the order of five to ten thousand. This represents a new
problem and it is intended to study scanning as related to
edge detection in the near future. The first step I would
like to take is to experiment with data point spacings at
various ranges to find the minimum number of data points we
can get by with and still have effective detection. Second,
the effects of the 1 m/sec travel speed and the .63 rad/sec
turning rate have on the results. Computation times for the
two different schemes arealso of interest.

Proposed Schedule.

February March April May

Data point spacing for
edge detection

Speed and turning effects

Final scheme proposal

Report

C.3. Path Selection System Simulation and Evaluation -
R. R. Simonds, R. Campbell
Faculty Advisor: Prof. D. K. Frederick

Previous efforts concerning this area of investigation have con-
centrated upon the development of a computer package for the simulation
and evaluation of proposed path-selection systems. The objective of
the present effort is twofold. The first is the development of standard
test terrains and a testing procedure to facilitate the analysis capa-
bility of the simulation package. The second is the simulation and
evaluation of a path selection system proposed several years ago by the
navigational computer group at Cornell University.

The development of test terrains has proceeded through the struc-
turing of several initial test sequences and the analysis of the early
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Cornell system has been performed using these test sequences.
The progress in the two areas of study.is discussed below, followed
by a statement of future work.

C.3..a. Development of Standard Test Terrains and Evaluation Procedures

To facilitate the use of the computer simulation package
as an evaluation tool, the development of a standard test-
ing procedure has been undertaken. This testing procedure
consists of investigating the obstacle avoidance behavior
of a path-selection system by simulating the system's per-
formance on a sequence of test terrains in the presence of
random effects.

In developing this testing sequence an effort -was made to'
determine general rules for the structuring of test terrains,
the use of random effects, and the examination of system
characteristics that would provide the most information from
each simulation. It is hoped that the developed testing se-
quence will not only provide the program user with a set of
terrains and techniques to meet his analysis needs but also
a set of guidelines for incorporating additional test situa-
tions into the sequence as the need arises.

Noise
The testing procedure outlined below employs the noise capa-
bility of the simulation package to create the effect of
high-frequency rubble strewn over the test terrain. This
effect is obtained by adding filtered white noise to the
vehicle's in-path and cross-path slopes, thereby randomly
tilting the vehicle and perturbing the sensor orientation
accordingly. Knowledge of the damping ratios and natural
frequencies of the rover's pitch and roll modes is used to
specify the filter's characteristics. The capability of add-
ing noise to the laser range measurements exists and can be
used at the user's discretion. Generally the effect of a
tipping sensor mast, referred to as attitude noise, had a more
pronounced effect on system performance than that of range
measurement noise for the terrain sensing systems studied to
date.

The procedure used in the test sequences has been to first
examine the functioning of the system in the absence of noise
and, if the performance is satisfactory, to repeat the sequence
with the addition of noise effects.

Obstacles
The principle types of obstacles available in the simulation
are spherical or drum shaped boulders and spherical craters.
The boulders selected for use in the test terrains have height-
to-diameter ratios of unity. Boulders with heights of 2/3 and
2 meters, respectively, were used for analysis purposes.; The
2/3 meter size is roughly on the order of the maximum step
height that the rover can handle and represents a lower bound
on boulder obstacle sizes. The 2 meter size is on the order of
the vehicle's dimensions. Larger sizes were not used as it was
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felt that they would be too easily detected.to be useful.

The craters selected for use in the test terrains have
depth-to-diameter ratios of 1/3 and are used in diameters
of 1, 3, and 9 meters. The first case represents a lower
bound for the crater to be considered an obstacle, whereas
the second case has dimensions on the order of the vehicle's
dimensions. The largest size is roughly three times the
size of the vehicle and is therefore large enough and deep
enough to represent a serious hazard to the vehicle.

Standard Testing Procedure
The sequence of test terrains outlined below examines the
obstacle avoidance behavior of a path selection system under
a variety of ideal and non-ideal conditions. The testing be-
gins with relatively simple avoidance problems involving a
single boulder or crater and proceeds to more complicated
situations. Each avoidance problem is repeated on several
different base terrains in order to enable assessment of the
effects of in-path and cross-path slopes on the system's
functioning. In every case the noiseless performance of the
system is first examined. If the performance is satisfactory,
the case is repeated with the addition of noise.

1. Single Obstacle Encounters with Flat Base Terrain

In this basic avoidance situation shown in Fig. 42, a single
boulder or crater is placed directly on the anticipated line
of travel from the vehicle's initial position to the speci-
fied target position. The initial position is chosen such
that the boulder or crater is beyond the sensor range on the
first scan. The target is positioned so as to be attainable
and also minimize the length of the anticipated vehicle path.
This shortens the amount of computer time necessary for the
simulation and thereby reduces its cost. If the performance
is 3atisfactory, the same cases are repeated with the addi-
tion of noise effects. The range at which the system begins
active avoidance and the closest approach of the vehicle to
the obstacle are recorded for each case.

2. Single Obstacle Encounters with Rolling Base Terrains

a) Gently Rolling Terrain
In this testing sequence the terrain shown in
Fig. 43 is used to examine system performance in
the presence of the type of non-zero in-path and
cross-path slopes found in a gently undulating
terrain. The system's noiseless functioning is
examined first. The initial position and target
position are chosen to provide either non-zero
in-path and cross-path slopes by angling across
the terrain, or just in-path slopes by moving in
the x-direction only. A case with no obstacles
is run to determine the vehicle path to the target
and to serve as a base line in predicting when
avoidance behavior begins. A single boulder or
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crater is then placed directly in the vehicle's
path to the target and the procedure outlined for
the flat base terrain sequence is followed. If
the performance is satisfactory the same cases
are repeated with the addition of noise.

b) Rolling Incline
In this testing sequence the terrainshown in
Fig. 44 is used to examine system performance in
the presence of the type of non-zero in-path and
cross-path slopes encountered on the size of a
hill. The incline has a maximum in-path slope of
180 to 200 and presents no hazard to vehicle travel.
Both uphill and downhill approaches are possible.
The choices of initial vehicle position and target
position allow a variety of in-path and cross-path
slopes to be encountered as the vehicle proceeds to
the target. A case without obstacles is run to deter-
mine the path to the target and to serve as a base
line in establishing when avoidance behavior begins.
A single boulder or crater is then placed on the
vehicle's path and the procedure outlined in the flat
base terrain sequence is followed. The choice of the
obstacle's position is based upon finding situations
along the vehicle path to target where the effects of
in-path and cross-path slopes make detection difficult.
Fig. 45 shows two possible uphill cases for a path
parallel to the x-axis. In the first situation the
presence of the boulder is masked by the hill in the
background, In the second situation the sensor beam
is tilted above the obstacle's location.

3.' Multi-Obstacle Cases

The previous sequences examined the system's performance in
avc.ding single obstacles in a variety of slope settings and
in the presence and/absence of noise. The next sequence of
terrains assumes the system has proved it can successfully
avoid single obstacles, and presents the system with more
complicated avoidance problems to solve. All these cases are
run in the presence of noise.

a). Boulder-Crater Field
Figure 46 shows a maze-like arrangement of boulders
and craters of various sizes lying at the base of a
25 meter hill. There are several possible paths
through the field and the average path length to the
target is anticipated to be 50 to 80 meters. Filtered
white noise is used during the simulation to create
the effect of rubble strewn on the base terrain vary-
ing in sizeup to a maximum of 0.1 meters. The in-
dicators of system performance in this simulation are
the time to travel to the target, the length of the
chosen path, and the closest approach to an obstacle.
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SCALE IN METERS

0 5 10

CASE 1
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Fig. 45. Single Obstacle Encounters
(Rolling Incline)
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b) Box Canyon
Figure 47 shows a box canyon formed by three
Gaussian hills, each too steep to be climbed.. The
vehicle must back out of the canyon and circle the
hills to reach target.

Conclusions and Recommendations

The test terrains that have been developed to date place
heavy emphasis on single obstacle encounters in a variety
of slope settings and in the presence and absence of noise
effects. Satisfactory performance on these basic terrains
is required before performance on more complicated multi-
obstacle terrains is examined. The development of single
obstacle encounter terrains has been essentially completed
and future work should concentrate on the development of
additional multi-obstacle terrains.

To date, the use of noise effects in the testing procedure
has been cpnfined to the employment of attitude noise.
Future work should examine the use of range measurement
noise and the combined use of range measurement and attitude
noise.

C.3.b. Early Cornell System Evaluation

The first step in the analysis of the early Cornell path-
selection system was the incorporation of the system design
into the computer simulation package. After this was ac-
complished an analysis procedure was formulated in accord-
ance with the standard testing sequence which has been
developed concurrently and carried out. Finally, based on
the simulation results, sevtoral recommendations directed at
system improvements have been made.

A brief description of the early Cornell system, the simula-
tion procedure, and the results of the evaluation are pre-
sented below.

System Description
The early Cornell path-selection system as modeled in the
simulation package is divided into three distinct operations:
the sensor, the terrain modeling process, and the path-
selection algorithm. A description of each operation is given
below.

(i) Sensor - A sensor :ounted on a vertical mast fixed
to the front of the vehicle is simulated. The
sensor mast height above ground is specified by the
program user. The orientation of the sensor is cal-
culated by taking into account the effects of in-path
and cross-path slopes at the vehicle's current position.
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A single beam which moves in a plane perpendicular
to the mast is simulated. The scan time is as-
sumed to be instantaneous and the time between scans
is uniform. At each sensor scan 29 range measure-
ments are made in a uniform sweep of the area in
front of the vehicle, as indicated in Fig. 48.

(ii) Terrain Modeling Process - This process operates
on the range measurements received from the sensor
simulator. The result is a go/no go map generated
along the fifteen forward paths PI, P2,...,PI5 by
comparing the range measurements with the minimum
ranges required for a clear path. The vehicle
width and specified buffer zone are incorporated
in the calculations.

(iii) Path-Selection Algorithm - In normal operation the
path-selection algorithm chooses the closest "safe"
path to target. If all of the paths are blocked
the emergency mode is Galled and the following steps
are taken:

1) the vehicle is backed up in a straight
line,

2) a new sensor scan is taken,

3) the seven forward paths P5 through
P11, are blocked,

4) the closest "safe" path to target is
again selected.

A special feature of the path-selection algorithm
is the concave obstacle mode. This mode was speci-
fically designed to aid the vehicle in reaching its
destination if trapped by obstacles, forming a con-
cave blockade. When in this mode the minimum range
values are reduced and generally either the extreme
left or extreme right path is chosen. A more detail-
ed description of the early Cornell path-selection
may be found in Ref. 14.

Simulation Procedure
The simulation and evaluation of the early Cornell system
was performed in a systematic fashion, corresponding to the
guidelines of the standard test procedures described under
Task C.3.a. A total of 38 simulation runs have been made
examining the system's deterministic performance and its
performance in the presence of attitude noise. No examina-
tion of the effects of range measurement noise have been
made to date.

On the single boulder encounters and rolling incline cases
three system parameters were varied, namely, the sensor
mast height, the specified buffer zone, and the azimuth
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difference between adjacent beams, see Fig. 48. The
highlights of these simulations will now be discussed.

Simulation Results
As an example of a single obstacle encounter in the
presence of noise consider Fig. 49. The system detects
the boulder when the vehicle is 7 meters away and steers
gently left. However, at the next scan attitude noise
has tilted the sensor mast 10 degrees forward, driving the
scans into the ground. As a result, the vehicle is fooled
into believing there is an obstacle directly in front of
itself and steers sharply left.

Fig. 50 is an overlay of two runs with identical system
parameters but with different noise characteristics. The
upper path was made in the presence of noise and the path-
selection system called for two emergency backup maneuvers,
whereas the lower path was the result of an absence of
noise, with the vehicle moving directly to target. It
should be mentioned, however, that with the small boulder
of dimensions 2/3 x 2/3 meters the vehicle more often than
not failed to avoid the boulder because it lost sight of
it between sensor shots. Even when the azimuth difference
was reduced by 33% the system still failed to avoid the ob-
stacle.

On the rolling incline cases, when the boulders were placed
at the top of the hill they were never detected by the sys-
tem because as the vehicle approached the obstacle the scans
were pointing over it due to the in-path slope of the hill.
Fig. 51 is an example of the case where the boulder is placed
near the bottom of the hill, where the system was able to see
and avoid the boulder.

Spe.ial Terrains
The terrain depicted in Fig. 52 of 3 boulders and a cliff
wa: designed to challenge the emergency mode of the algorithm.
As originally implemented, the early Cornell system failed to
navigate the terrain, as the emergency algorithm repeatedly
steered the vehicle back into the trouble area. As an improve-
ment to the emergency procedure a memory capability was added,
thereby enabling the system to temporarily remember where the
trouble area is located. The path in Fig. 52 illustrates the
behavior of the modified system. The new emergency mode,
which was only triggered once in the simulation, enabled the
vehicle to find the only.safe path to the target.

In a deterministic run through a field of ten large boulders
the vehicle was able to find a short and safe path to target.
However, when the system was simulated over a realistic boulder-
crater field which included a small rise and noise, the perfor-
mance was not as efficient, Fig. 53. For this simulation a
one meter mast height and meter buffer zone were specified.
The vehicle was eventually able to reach its target despite
misinterpreting the small rise as an unnegotiable obstacle and
using the emergency mode 13 times.

Conclusions and Recommendations

The analysis of the early Cornell system performed to date
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has shown that it has the ability to navigate successfully
on most simple and-clearly defined obstacle encounters, but
has limited ability on realistic terrains and in the pre-
sence of random effects. However, the system is not capable
of negotiating small obstacles of 2/3 x 2/3 meters or less,
even when not perturbed by noise.

The size of those obstacles which are detectable is a func-
tion of the mast height. With small mast heights, noise
disturbances frequently trigger the emergency mode, when no
emergency really exists. Larger mast heights result in a
failure to detect smaller obstacles. A mast height between
1 to 2 meters appears to be about the best compromise, parti-
cularly if an ideal mechanical sensor is assumed that can
detect small obstacles.

The additional obstacle clearance obtained as the buffer
zone is increased beyond 1 meter is small, with a to 1
meter buffer recommended. This specification should produce
an actual obstacle clearance of 0.4 to 0.85 meters in most
cases.

To increase the system's capability to negotiate realistic
terrains the following path-selection system modifications
are recommended as items for future study:

(i) The addition of a dual or multi-beam sensor
scheme incorporating different elevation angles
or sensor heights. The purpose of varying the
orientation or position of sensor locations would
be to divorce the function of detecting large
positive obstacles from that of detecting small
boulders and craters.

(ii) The use of non-uniform sensor scanning with the
greatest density of scans being taken directly in
front of the vehicle.

(iii) The incorporation of an emergency mode which has
the ability to remember where a trouble area exists
until the vehicle has safely passed the problem.

Future Work

Future work is planned in the following areas:

(i) Completion of early Cornell System Evaluation - Work
will include the study of recommended improvements
and the addition of range measurement noise to the
simulation of random effects.

(ii) Investigation of Short Range Path Selection System -
Work will include development of a path-selection
algorithm, terrain modeler, and sensor configuration
for a system that has sensing capabilities on the
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order of 3 to 5 meters. The design will be
analyzed by simulating the system's performance
on standard test terrains.

(iii) Continued Development of Test Terrains - Work
in this area will concentrate on the improvement
of testing procedures and the development of
additional test terrains that will enhance the
analysis function of the simulation package.

(iv) Software Refinement and Documentation - There is
an ongoing effort to improve the efficiency of
existing software and updating and improving the
program documentation will be continued.

The work described in (i), (ii), and (iii) is scheduled for
completion in May 1974.

Task D. Chemical Analysis of Specimens

One important phase of the initial missions to Mars is the search
for organic matter and living organisms on the martian surface. The present
conoept for attaining this objective consists of subjecting samples of the
atmosphere and surface material to certain chemical and biochemical reactions
and thereafter analyzing the products produced, probably in a combination gas
chromatograph/mass spectrometer (GC/MS). The gas chromatograph is proposed
for separating complex mixtures evolved from the experiments into small groups
of similar chemical species. Chemical analysis of these groups would be
accomplished in the mass spectrometer, It is the objective of this task to
provide engineering techniques and criteria for designing such a system.

Most of the previous effort has involved the systems analysis of
the gas chromatograph using simulation, Ref. 15 and 16, This technique 'ses
mathematical models, which incorporate fundamental parameters evaluated from
reported experiments, to explore various concepts and to direct further 1x-
perimental research. Application of prior work to multicomponent chemical
systems and improvement of the mathematical model are currently being studied.

The task problems are being attacked by a three-member team, each
of whom is pursuing a specific assignment:

1. Chromatograph system characteristics

2, Chromatograph simulation development

a. Multicomponent chromatography
b. Chromatograph model improvement

D.1. Chromatograph System Characteristics - A. N. Stovall
Faculty Advisor: Prof. P. K. Lashmet

It is the objective of this subtask to develop techniques for
designing chromatograph systems using simulation models currently
under study. As the purpose of the chromatograph is to separate
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chemical species, the initial effort involves a quanti-
tative definition of resolution or the degree of separa-
tion obtained in a specific design under particular
operating conditions. A large value of resolution should
imply a chromatogram having distinct peaks, whereas a low
value should suggest poor separation or overlapping peaks.
Resolution should be a function of the.physical parameters
of the chromatograph, and use of moment analysis seems
logical.

Based on the concepts of Fig. 54, the resolution R has
been defined in the literature, Ref. 20, as

T 2  T2 1
R=

(W1 + W2 )/2

where

T1 T = peak times for first and second
component, respectively

W1'W2  base widths for first and second
component peaks, respectively

For almost symmetrical peaks, resolution of unity corresponds
to peak bases immediately adjacent to one another with no
overlapping. Overlapping peaks give resolution of less than
unity. The above parameters may be approximated by the
moments, Ref. 17 and 18:

T Ju()

W*- 4 (2)

where

,*o() = first moment about the origin or the
peak mean

(2) = second moment about the mean or the
variance

Resolution now becomes

0.5 [w(1) 2  %u(1)!

R = 1 2)2 + 2)1

These moments may be calculated from the model equations and
are functions of the system parameters, Ref. 17.

Further investigation showed this definition to be independent
of sample size or composition. Figure 55 shows that the chroma-
tograms of the same chemical but of different sample sizes are
different although they have the same moments. Because of this
characteristic, resolution as defined above appears inadequate
to represent separation in mixtures of components having widely
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different sample sizes. The two chromatograms of the
binary system shown in Fig. 56 have the same set of
moments and.hence the resolutions are identical. In the
upper figure, the peaks are relatively distinct.. However,
in the lower figure the peak of the second component is
not distinct because of its small sample size and intuitively

a small resolution should be assigned the separation. Thus
another definition of resolution, sensitive to sample size

is required.

In a chromatograph, the output signal is the sum of composi-
tion contributions of all components. The resolution defini-

tion now being considered is based on these contributions:

R. = A./A
1 1

where

R. resolution of component i for the peak

where the component predominates.

A. = contribution of component i to the area

under the peak where the component predominates

A = total area under the peak of interest.

In the initial studies, the areas will be computed over the
finite peak base W as given by the second moment or variance

approximately, Fig. 55. This resolution which is the effective
composition of the component within the peak, will range from
unity for complete separation to zero for essentially no sepa-
ration; i.e. the sample is small compared to amounts of other
interferring chemicals. Thus each component is assigned a
resolution indicative of i.:s separation from the other components.

Present efforts involve development of a computer procedure for
simulating a chromatograph model forced with an arbitrary sample
injection expressed by data and using numerical convolution.
The procedure is limited to a binary system and uses the equili-

brium adsorption model, Ref. 18, in these initial studies. Out-
put information will include plots of the input pulse, the result-
ing chromatogram, and the output curves corresponding to the two
pure components. Resolution as defined above is also determined.
Verification of the suitability of this resolution will follow
using chemical systems previously studied experimentally. If
this concept of resolution proves satisfactory, a systematic
study of the effect of design parameters will be begun. These
parameters include:

1. Characteristics of the chemical system (the
thermodynamic parameter mR )

2. Carrier gas flow rate

3. Column dimensions

4. Packing dimensions

5. Injection pulse characteristics
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D.2. Chromatograph Simulation Development

D.2.a. Multicomponent Chromatography - R. C. Lavoie
Faculty Advisor:- Prof. P. K. Lashmet

Prior efforts have shown that representation of binary chroma-
tograms by superposition of pure component data is a first-order
approximation and in certain cases leads to large discrepancies,
Ref. 16 and 19. This subtask has as its objective the generation
of additional binary data and analysis of the observed nonlinear
effects.

Toward the goal of producing more accurate and useful data,
modification of the chromatograph equipment was first undertaken.
The equipment consists of a gas chromatograph column with thermis-
.tor probes positioned to produce electrical signals proportional
to the input and output compositions of the test samples, Ref. 20.
The signals are detected in a DC bridge before being recorded by
an oscillograph. Recording accuracy was improved by replacing a
discrete, multiposition voltage divider in the bridge with a
potentiometer to allow continuous attenuation of the thermistor
signal. This attenuated signal, the input to the oscillograph,
could be precisely adjusted to give full scale recordings. Relative
error in reading the graphical output was reduced in some cases by
a factor of 3 or 4.

It was noted that injection of liquid samples produced a dispersed
pulse at the column inlet. For maximum resolution, the sample in-
put to the column should be a sharp, narrow pulse, so modifications
to the injection block were undertaken. The liquid sample injection
block consists of cylindrical chamber containing an electrical heater.
Samples are injected into the chamber by syringe where they are
vaporized by the heater and carried into the column by an inert gas
stream which passes through the block. A cylindrical sleeve, de-
signed to reduce dead volume was fitted into the chamber and the
power to the block heater was increased to hasten sample vaporization.
As seen in Fig. 57, the input pulse was markedly improved by the
changes.

To improve data reduction and to obtain more useful information,
some of the computer programs were changed. First, second, and
third moments of input and output pulses, which are important in
model analysis, are now computed in both dimensionless and real time.
Gas compositions are reported as actual sample mole fractions rather
than as normalized data points, merely proportional to composition.
This information is important in checking some of the assumptions
used in the model derivation.

In the experimental program, new data were collected to supplement
previous data and to explain deviations from predicted results.
Major deviations were encountered in using the Carle minivalve to
input gas samples such as ethylene, and in running binary samples
on the Chromosorb-102 column. In the ethylene system, a sharp,
narrow input produced a low, flat output pulse with excessive tail-
ing, whereas the model predicted a relatively sharp, high output
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peak.. It was noted that the porous Chromosorb-102 column might
be poorly represented by the model which assumes no porosity.
However, similar behavior resulted when using a Carbowax-1500
column which is believed to be nonporous. It is now thought
that deviations from the model are due to nonlinearities intro-,

duced by the high concentrations (,-30%) present in the input

pulse of the minivalve. This will be further investigated.

Model predictions of binary sample separation are based on linear

superposition of pure component data. Pentane-heptane samples on

Chromosorb-102 were shown to deviate markedly from this model,

Ref. 19. Attempts to separate these components on the non-porous
Carbowax-1500 column to determine if porosity was a factor were
not successful. A new non-porous column composed of di-2-ethyl-
hexyl sebacate (DES) on an inert substrate and described in Table

II was purchased and tested.

Data from this column were especially well modeled by the simple

equilibrium adsorption model, Ref. 18. Pentane and heptane samples
were run at temperatures of 50 to 1250 C, and adsorption activation

energies of 4.0 and 6.6 kcal/mole respectively were derived from
temperature behavior of the thermodynamic parameter mRO, Fig. 58.

Sample sizes ranging from 0.2 to 3.0 microliter gave no significant

differences in values of mR O. Binary samples were used, and linear
superposition of pure component data predicted the binary results
well. Comparison of the simulation with experimental data, shown
typically in Fig. 59 indicated a slight non-linear effect in the
heptane data. However, considering the error in determining the
parameter mRO from pure component data as shown in Table III,
the simulation and experimental results were essentially the same.

Future work includes using a mercury porosimeter to compare poro-
sities of the various columns, further analysis of the Chromosorb-
102 column data to determine the reasons for deviations from linear
superposition, and proposing a new model to handle nonlinearities
encountered in experimental work.

D.2,b. Chromatograph Model Improvement - P. T. Woodrow
Faculty Advisor: Prof. P. K. Lashmet

The objective of this task is the development and verification of
a mathematical model that adequately predicts the component be-
havior of a sample injected into a gas chromatograph. At this time,
a comprehensive model, in the form of a set of coupled, partial
differential equations, has been developed and studied using the
techniques of moment analysis. This model includes the following
transport mechanisms: axial diffusion, axial convection, mass trans-
fer between the interparticle and intraparticle regions, intra-
particle diffusion and a finite rate of adsorption within the
particle. Moment analysis of this model has shown it to be more
capable of predicting characteristics of actual data than the simpler
models previously studied, Ref. 16. The development and moment
analysis of this model are documented in a recently issued technical
report, Ref. 21.

The recent technical report, Ref. 21, also considered aspects of
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TABLE II

DES COLUMN CHARACTERISTICS

Length 100 cm

Outside diameter 0.635 cm

Inside diameter 0.555 cm

Particle size 60/80 mesh
(0.0250/0.0177 cm)

Coating di-2-ethylhexyl sebacate

(DES) 20% by weight

Substrate Chromosorb P (firebrick)

Temperature range room to 125 C

Application separation of hydrocarbons,
C and heavier
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Fig. 58. Effect of Temperature Upon Thermodynamic Parameter
mRO for Pentane/Heptane System on DES Column



PLOT OF PURE CCPPCNENT DATA VS. ACTUAL CATA
D=ACTUAL PENTANE DATA, 1=AC1UAL HEPTANE DATA, 2=PURE PENTANE CATA, 3=PURE FEPTANE CATA

1.00.-02 X++++++++X+4 .+++++ +++ +++++ +++++ ++ X4........ 444444 +X44+44444+ X444.... .X.++ ++......... X+4+4 . .. _X

+ +
+ +

._._ - - __ _ _ _ _ __ _ _ _ _ __ ____ ______
9.00E-03 X + + + + 4 + + + x

.... . .- 38 . 0 E- 03 ... . +.

+ HEPTANE DATA
- -- -----------

7.001-03 X 0 + + + 4 + + x

+ PENTANE DATA AND SIMULATION +

6.00E-03 X + + + + 4 + + x

4 +

+ I HEPTANE SIMULATION
5---0-- --- 5.U .--O3 X ......--- ...---.. ------. .- -- + + -4-- --- - .- 4--4-- 4.

- +

+ 2 +
4.00E-03 X + + + + + + x

3.00E-03 X + + + + + 4 + + x

4 4--

+

+ +

++

+ +

i_ __. ~ 2 -- -- - - - - -- -------------------- - -- -- _ __ _ _ _ __ _ _ _ __ _ _ _ _

3.00E-03 X + + + + + + 4 + X

2....0E.-C... . ... 2.00E 4.CCE. C 0 -6.OE ...0. -" CE.. CO .0 01. -- 01 140E--1--,60E-1.-L -8 c1 7 .r.- 01-0 .2'20E--O--..

2. 0 -- .... . ..- + - --- - --------- _--__ .- +- - _+

.75.00 H03X PTE -- .25 PENTA- 22.3 1 C/M N
Fig. 597 ntaneHeptane on DES Column at 1000C

,- 4LB IH D DR [~ +3):
. . .. .. .. . . . . . . . .. . .. . . . . .. . . . .. . . . . . .... .. .. ... .4.. . . . . .. . . . . . . .. .. . . . -

______ - ~4 ____- - -X 59_ Pe ta e/ ep ano DE S__Column at___ _____________C



105.

TABLE III

DETERMINATION OF mRO FOR HEPTANE ON DES COLUMN

Pure sample at 1000 C

Sample size, mRO
micromoles

1.36 0.0806
3.41 0.0751
3.41 0.0823
6.81 0.0801
6.81 0.0799

20.5 0.0795

Binary sample with pentane at 1000.

Composition, mR0
wgt. fraction

0.01 0.0827
0.10 0.0824
0.25 0.0819
0.50 0.0822
0.75 0.0829
0.90 0.0830
0.99 0.0830
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numerical analysis for the proposed model. Because of the
complexity of the model, analytical techniques were not feasible
and a study of applicable numerical techniques was made. The

technique of orthogonal collocation, Ref. 22, is being studied

and applied to several systems of equations to determine if it

can be used routinely for numerical solutions and hence verifica-

tion of the complicated chromatograph model. The systems of equa-

tions presently being analyzed are given in Fig. 60. Appropriate

boundary and initial value conditions have been presented earlier,

Ref. 21. The study of this sequence of systems is motivated by

the knowledge that systems 1 and 2 of Fig. 60 have known, exact,

analytical solutions, and simulations using orthogonal collocation

can be evaluated directly. In addition, this sequence provides an

opportunity to appraise the technique of orthogonal collocation in

its ability to solve systems of one, two, and three coupled, partial

,differential equations.

Preliminary analysis of orthogonal collocation was recently docu-
mented, Ref. 21 . Since that time, the simple model, system 1 of

Fig. 60, has been studied using unit rectangular pulses and actual

data as forcing functions for high and low values of the Peclet
number Pe. Figure 61 shows a seventh order collocation solution
using actual data as a forcing function. Figure 62 shows a fifteen-

th order simulation, and Fig. 63 shows the exact response. Compari-
son of the figures indicate that the collocation solution is very

good within the region of the non-zero response. However, small

oscillations are present where the response should be essentially

zero. This behavior seems to be inherent in the method. Increas-

ing the order of the collocation approximation reduces the magnitude

of the oscillations so that they become unimportant when compared to

the magnitude of the simulated response. Computer time rapidly in-

creases though.

At present, collocation simulations are being made for the syster. 2
of Fig. 60. Subsequent to this, system 3 of Fig, 60 will be studied.
The results of these studies should establish the utility of ortlo-
gonal collocation as a numerical technique for the solution of com-
plex chromatograph models and thus give a technique wherein the
importance of different transport phenomena in the chromatographic
process may be assessed.
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1. Simple, diffusion-convection model:

Pe zo  z 2 -- 3-

2. Inter-intraparticle model without diffusion

Pe z 2) z z NRU

= N (Y-Y*)

I = NRU

y = mx

3. Inter-intraparticle model with diffusion

2 (1y _ 3(1-E)B L\ 2  1 Iby2 

12

H ~ +()bY jNRU (y -y *
Pe lr2 br RU i i

R 6 = NERU ii S

y, = mx

Fig. 60. Equations Being Studied by Orthogonal Collocation
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Fig. 61. Simulation of Simple Model Using 7 Collocation Points
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Fig. 62. Simulation of Simple Model Using 15 Collocation Points
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